Descrizione del progetto
Uno studio indaga la dinamica degli ioni veloci nei reattori a fusione
I tokamak sono particolari dispositivi di confinamento magnetico utilizzato nei reattori per produrre energia da fusione termonucleare controllata. Una sfida cruciale è come mantenere il plasma sufficientemente caldo in modo che possa avvenire la fusione, evitando al contempo che le pareti del tokamak si fondano a causa del calore. Per evitare danni potenziali, i tokamak devono funzionare senza dannose instabilità al bordo. Il comportamento degli ioni energetici è di fondamentale importanza per lo studio dei processi di fusione nei reattori. Il progetto FICOP, finanziato dal programma di azioni Marie Skłodowska-Curie, studierà i meccanismi fisici fondamentali che sono alla base dell’interazione tra le instabilità al bordo e il confinamento degli ioni veloci. I ricercatori studieranno inoltre quali condizioni favoriscono la fuga degli ioni nei tokamak.
Obiettivo
The project presented here deals with Fast-Ion Confinement OPtimization (FICOP) in magnetically confined fusion reactors. The goal of the project presented here is the characterization of the effect of edge instabilities on fast-ion confinement and the understanding of the physical mechanisms behind this interaction, as well as to experimentally explore the conditions upon which ion runaway can take place in tokamaks by studying the behaviour of fast-ions in the current ramp-up and ramp-down phases, disruptions, and sawtooth crashes. To fulfill these objectives, novel and cutting-edge data analysis techniques will be developed to be applied to fusion diagnostics, including integrated tomography techniques and deep learning.
The results of this project are expected to have a direct impact on the fusion community. The problem of power exhaust in tokamaks mainly focuses on the power dissipation through the divertor plates. Therefore, the limits to tokamak operation are set based on the heat fluxes that the materials in the divertor plates can tolerate. However, an additional constraint might come from the fast-ion heat loads due to edge instabilities that may deposit power not only on the divertor plates but also in the first wall of the main chamber, often in localized areas. The results of this project may help to assess weather fast-ion heat loads to the main chamber first wall due to edge instabilities can pose an additional constraint to the operational regime of a tokamak fusion reactor, or eventually impact its design by the addition of reinforced structures. The experimental results of the project will also be used to benchmark the state-of-the-art codes that the fusion community uses to make projections towards future machines. If successful, the benchmark will strengthen our confidence in our predicting capabilities, while if unsuccessful, the results will motiv
Campo scientifico
Programma(i)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Meccanismo di finanziamento
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinatore
41004 Sevilla
Spagna