European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Optical circuit switched time sensitive network architecture for high-speed passive optical networks and next generation ultra-dynamic and reconfigurable central office environments

Objetivo

Skyrocketing capacity demands and emerging 5G and industrial internet URLLC applications currently pose a new strict latency-oriented framework calling urgently for new radical architectural changes at the key aggregation infrastructure being in local proximity to the subscribers: the Central Offices (COs). A careful look into the CO reveals a capacity-latency predicament underlining the need for the employment of innovative technological solutions, with photonics emerging as the key enabling technology, that will establish a new NGCO ecosystem where component-level advancements can yield unparallel architectural benefits. OCTAPUS aims to deliver an agile, low-cost and energy-efficient PIC technology framework that will re-architect the NGCO ecosystem, transparently upgrading its capacity to 51.2Tb/s and beyond, through an innovative optically-switched backplane and transceiver toolkit. To realize its ambitious goals, OCTAPUS will leverage the novel integration of antimony-based Phase Change Materials (PCM) on the low-cost SiN to develop for the first time a non-volatile ns-scale optical switch technology for developing an ultra-high capacity optical backplane. OCTAPUS will also deploy a versatile portfolio of InP-based O-band optical components that will enable the realization of 50G low-power board-to-board and long-reach PON transceivers, securing 4x and 8x energy saving to existing state-of-the-art solutions, while reaching up to 37.5% cost improvement against conventional EML solutions, through its monolithic fabrication approach. Moreover, OCTAPUS will equip its novel PICs with low loss and compact interfaces to fibers, through advanced glass diplexer-embedded-interposers. Finally, OCTAPUS will synergize the developed optical components in a novel NGCO architecture, supporting 3 layers of traffic with deterministic latency guarantees for URLLC services, through the incorporation of reconfigurable express light paths along with TSN functionality.

Coordinador

ARISTOTELIO PANEPISTIMIO THESSALONIKIS
Aportación neta de la UEn
€ 1 155 000,00
Dirección
KEDEA BUILDING, TRITIS SEPTEMVRIOU, ARISTOTLE UNIVERSITY CAMPUS
546 36 THESSALONIKI
Grecia

Ver en el mapa

Región
Βόρεια Ελλάδα Κεντρική Μακεδονία Θεσσαλονίκη
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 155 000,00

Participantes (9)

Socios (1)