Project description
Innovative devices based on hybrid photonic platforms
The EU-funded LOLIPOP project builds on TriPleX, a proprietary waveguide technology for photonic integrated circuits developed by Netherlands-based company LioniX International which satisfies the growing need for bandwidth and capacity in telecommunication and sensing applications. LOLIPOP will focus on equipping TriPleX with new functionalities by exploring materials like: lithium niobate on insulator (LNOI), an excellent material for high-speed light modulation; germanium, known for its high-speed and ultra-wide bandwidth detection capabilities; and gallium arsenide, a well-established material for gain chips. To combine LNOI and TriPleX, various hybrid integration methods, such as flip-chipping and micro-transfer printing, will be explored. For the germanium photodiodes, heterogeneous integration will be developed to achieve high detection efficiency in a broad wavelength range (400–1 600 nm).
Objective
Despite the huge progress by photonics, extended spectral bands at wavelengths below 1100 nm remain heavily underserved in terms of integration solutions. At the same time, the silicon nitride is booming and the lithium niobate is making an impressive comeback in the form of lithium niobate on insulator (LNOI), with both materials being transparent both in the visible and the NIR. With all these viewed as a unique opportunity, LOLIPOP steps in to develop a disruptive platform that will offer the highest integration, modulation and second order nonlinear performance in the entire spectrum from 400 up to 1600 nm, based on the combination of the LNOI and the silicon-nitride (TriPleX) technology. To this end, LOLIPOP will develop die-bonding and micro-transfer-printing methods for low-loss (<0.5 dB) integration of LNOI films on TriPleX without compromise in the functionality of the two platforms. It will also develop a process for growth of Ge photodiodes (PDs) inside pockets and a process for flip-chip bonding of active elements inside recesses on TriPleX. Given the possibility of the Ge-PDs to operate in the entire 400-1600 nm spectrum, and the flexibility of the bonding process to adapt to different actives and wavelengths, the picture of this ultra-wideband technology is complete. LOLIPOP will demonstrate its potential via the development of: 1) The first ever integrated laser Doppler vibrometer at 532 nm with ultra-narrow linewidth (<5 kHz) and ultra-high modulation (6 GHz), 2) The first ever integrated FMCW-LIDAR at 905 nm with ultra-high linear chirp (10 GHz) and optical phased array-based 2D beam scanning, 3) Photonic convolutional neural networks with record scale, computation speed (24 TOPS) and power consumption reduction compared to electronic solutions, and 4) The first ever integrated squeezed-state source with 6 dB squeezing level for quantum applications at 1550 nm. A roadmap for the offering of LOLIPOP technology as commercial service will be prepared.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry alkali metals
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.2 - Key Digital Technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2021-DIGITAL-EMERGING-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
106 82 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.