Project description
Clean, cheap hydrogen from synthetic bacteria
Certain bacteria can split water into hydrogen and oxygen using light. Taking a cue from nature, the EU-funded PhotoSynH2 project aims to develop genetically modified bacteria (cyanobacteria) able to convert solar energy to hydrogen. For their synthesis, researchers will employ a novel synthetic biology approach called photosynthetic electron focusing. The bacteria could be adapted and grown in seawater and wastewater. To realise a scalable approach, researchers will target the development of large-scale photobioreactors that could demonstrate a tenfold increase in efficiency compared to the state of the art. The theoretical estimates for hydrogen production costs could be as low as EUR 5/kg, rendering the proposed technology cost competitive compared to current systems integrating photovoltaics and electrolysers.
Objective
We propose a disruptive technology based on synthetic biology, we call photosynthetic electron focusing, for the efficient production of hydrogen using low-cost photosynthetic bacteria (cyanobacteria) genetically re-engineered to exclusively direct the solar energy to hydrogen. Through the development of new high-efficiency large-scale photobioreactors we will obtain an unprecedented increase in the energy efficiency up to ten-fold higher than current approaches. Our theoretical estimates for the production costs could be as low as 5€/Kg of H2, making our technology potentially comparable to current photovoltaic coupled to electrolysis. Our bacteria could be adapted and grown in sea water and wastewater. Moreover, it would not require using Critical Raw Materials or toxic processes. Our biological route involves using fermentation-like technologies, with expertise available in many sectors such as the food industry. It will also employ contained bioreactors, constructed with simple fabrication technologies, which are decreasing in cost (e.g. the cost of 3D printing materials is decreasing much faster than the cost of microfabrication). We will validate our engineered cyanobacterium in a custom 1,300 L photobioreactor, which will be able to produce validated innovative green H2 production technology. This proof-of-concept production will be located in a hydrogen industrial stakeholder to ensure the large-scale relevance of our production.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering water treatment processes wastewater treatment processes
- engineering and technology environmental biotechnology bioremediation bioreactors
- natural sciences biological sciences microbiology bacteriology
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2021-PATHFINDERCHALLENGES-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.