Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multiscale Imaging of Cardiovascular Pressure Gradients – a Paradigm Shift in Hemodynamic Risk Prediction

Project description

Imaging cardiovascular pressure gradients non-invasively

Quantification of cardiovascular pressure gradients is critical for diagnosis and treatment planning of many cardiovascular disease. Whilst gold-standard measures are performed by invasive catheterisation, non-invasive alternatives offer several advantages including decreased risk of complications and reduced patient discomfort. However, current techniques are limited to a subset of disease, leaving many instances where pressure gradients remain unexplored. To address this, the EU-funded MultiPRESS-project will develop a novel imaging paradigm for non-invasive assessment of cardiovascular pressure gradients, overcoming limitations of existing techniques through a unique multiscale approach. Using advanced magnetic resonance imaging (4D Flow MRI), super-resolution networks, and physics-informed image processing, MultiPRESS will enable non-invasive hemodynamic risk prediction through previously inaccessible cardiovasculatures, tackling urgent clinical challenges across the heart, aorta and brain.

Objective

Regional quantification of cardiovascular pressure gradients is critical for diagnosis, treatment planning, and risk prediction of many cardiovascular diseases. Still, for a large number of conditions, non-invasive assessment is obstructed by inherent method limitations, and a wide range of cardiovascular instances exist where regional pressure behaviour remains unexplored. The MultiPRESS project main objective is to develop a novel imaging paradigm for non-invasive assessment of cardiovascular pressure gradients, overcoming critical limitations of existing techniques through a unique multiscale approach. Doing so, the MultiPRESS project seeks to – for the first time – extend non-invasive hemodynamic risk prediction into previously inaccessible cardiovascular domains, advance our knowledge of complex hemodynamic behaviour, and tackle remaining urgent clinical challenges across the heart, aorta, and brain. Using deep integration of advanced full-field magnetic resonance imaging (4D Flow MRI), super-resolution networks, and physics-informed image processing, a set of core developments will allow for unique, comprehensive image-based pressure gradient assessment across (1) spatial (big/small vessels), (2) temporal (fast/slow flows), and (3) flow (laminar/turbulent) scales, with developments consistently validated in dedicated in-silico, in-vitro, and in-vivo cohorts. These developments will then be utilized on a set of core applications across (4) cardiovascular scales (heart/aorta/brain), addressing urgent clinical challenges and extending image-based pressure gradient quantification through previously inaccessible domains. Based in a unique multidisciplinary setting at Scandinavia’s largest university hospital, successful delivery of MultiPRESS will represent a paradigm shift in clinical hemodynamic risk prediction, and pave way for new scientific knowledge revitalizing risk stratification of complex cardiovascular disease across the heart, aorta, and brain.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-STG

See all projects funded under this call

Host institution

KAROLINSKA INSTITUTET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 621 913,00
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 621 913,00

Beneficiaries (1)

My booklet 0 0