Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Provable Scalability for high-dimensional Bayesian Learning

Descrizione del progetto

Migliorare la scalabilità dei metodi di apprendimento bayesiano

Gli algoritmi di apprendimento bayesiano computazionale, compresi gli algoritmi Monte Carlo a catena di Markov, sono ampiamente utilizzati in una varietà di quadri di modellazione, come i modelli gerarchici e ad alta dimensionalità. Con l’aumento della scala e della complessità dei dati disponibili, questi metodi statistici devono essere scalabili dal punto di vista computazionale per poter essere utilizzati. Il progetto PrSc-HDBayLe, finanziato dal CER, affronterà questa sfida ricavando un’ampia raccolta di risultati per gli algoritmi di calcolo bayesiano comunemente utilizzati, con particolare attenzione ai metodi Monte Carlo a catena di Markov, i quali saranno applicati a vari quadri di modellazione che di solito vengono usati per compiti statistici. I risultati sosterranno la progettazione di nuovi approcci computazionali di maggiore scalabilità e l’ottimizzazione di quelli esistenti, mettendo in pratica la teoria nei casi di calcolo bayesiano.

Obiettivo

As the scale and complexity of available data increase, developing rigorous understanding of the computational properties of statistical procedures has become a key scientific priority of our century. In line with such priority, this project develops a mathematical theory of computational scalability for Bayesian learning methods, with a focus on extremely popular high-dimensional and hierarchical models.

Unlike most recent literature, we will integrate computational and statistical aspects in the analysis of Bayesian learning algorithms, providing novel insight into the interaction between commonly used model structures and fitting algorithms. Key methodological breakthroughs will include a novel connection between computational algorithms for hierarchical models and random walks on the associated graphical models; the use of statistical asymptotics to derive computational scalability statements; and novel understanding of the computational implications of model misspecification and data heterogeneity.

We will derive a broad collection of results for popular Bayesian computation algorithms, especially Markov chain Monte Carlo ones, in a variety of modeling frameworks, such as random-effect, shrinkage, hierarchical and nonparametric ones. These are routinely used for various statistical tasks, such as multilevel regression, factor analysis and variable selection in various disciplines ranging from political science to genomics. Our theoretical results will have direct implications on the design of novel and more scalable computational schemes, as well as on the optimization of existing ones. Focus will be given to develop algorithms with provably linear overall cost both in the number of datapoints and unknown parameters. The above contributions will dramatically reduce the gap between theory and practice in Bayesian computation and allow to fully benefit of the huge potential of the Bayesian paradigm.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC - HORIZON ERC Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2022-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

UNIVERSITA COMMERCIALE LUIGI BOCCONI
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 488 673,00
Indirizzo
VIA SARFATTI 25
20136 Milano
Italia

Mostra sulla mappa

Regione
Nord-Ovest Lombardia Milano
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 488 673,00

Beneficiari (1)

Il mio fascicolo 0 0