Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Heterogeneities-guided alloy design by and for 4D printing

Description du projet

Les microstructures locales dans les alliages facilitent la conception de matériaux sur mesure

Les alliages sont un mélange de deux ou plusieurs métaux ou éléments métalliques et non métalliques. Ils présentent un certain degré d’hétérogénéité dans leur structure, ce qui empêche leur utilisation généralisée dans la fabrication additive. Le projet HeteroGenius4D, financé par le CER, mettra au point des approches de fabrication additive ascendante très précises afin d’adapter ces structures hétérogènes à différentes échelles de longueur. La possibilité d’exploiter les hétérogénéités structurelles et de créer des matériaux dont les propriétés peuvent évoluer au fil du temps ajoute une quatrième dimension à la conception des composants imprimés en 3D, ouvrant ainsi la voie à l’impression 4D.

Objectif

Superior high-performance materials and CO2-free production technologies are key enablers to solving Europe’s current and future societal challenges [1]. In this context, additive manufacturing (AM) as one of the disruptive, green production technologies of our time “is expected to become a key manufacturing technology in the sustainable society of the future” [2].

However, alloys specifically designed for AM are rarely available, which prohibits AM from reaching its full potential. In contrast to conventional alloys and processing, alloys processed by AM are highly microstructurally heterogeneous. It is the aim of HeteroGenius4D to use the process-inherent conditions of highly precise, bottom-up AM approach to tailor these heterogeneous structures (e.g. grains/phases and their boundaries and orientations, chemical gradients, etc.) locally and spatially on various length scales. This is the basis for the novel design concept of heterogeneities-guided alloy design for AM. The potential to print local microstructures and properties in AM adds a 4th dimension to the design of 3D printed components; i.e. enables 4D printing.

AM-processed metals with increasing degree of heterogeneity (from pure element over solid solutions with chemical gradients to multi-phase alloys with further phases and gradients) are studied systematically. The process-structure-properties-performance linkages are identified and quantified by combining high-throughput material synthesis (using extreme high-speed laser material deposition) and characterization with physics-based simulation tools, enabling a comprehensive integrated computational materials engineering (ICME) framework. The generated data serves as a basis for sophisticated data-driven (machine learning, ML) materials modelling and enables the establishment of an Experiments-ICME-ML optimal design approach for metal AM. Finally, the concept of heterogeneities-guided alloy design is generalised and transferred to graded components.

Régime de financement

HORIZON-ERC - HORIZON ERC Grants

Institution d’accueil

TECHNISCHE UNIVERSITAT BERLIN
Contribution nette de l'UE
€ 1 499 999,00
Adresse
STRASSE DES 17 JUNI 135
10623 Berlin
Allemagne

Voir sur la carte

Région
Berlin Berlin Berlin
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 499 999,00

Bénéficiaires (2)