Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Heterogeneities-guided alloy design by and for 4D printing

Projektbeschreibung

Lokale Mikrostrukturen in Legierungen helfen bei der Entwicklung maßgeschneiderter Werkstoffe

Legierungen sind eine Mischung aus zwei oder mehr Metallen oder metallischen und nichtmetallischen Elementen. Dies führt zu einem gewissen Grad an Heterogenität in deren Struktur, was ihre breite Anwendung in der additiven Fertigung behindert. Das vom Europäischen Forschungsrat finanzierte Projekt HeteroGenius4D wird hochpräzise „Bottom-up“-Verfahren für die additive Fertigung entwickeln, um diese heterogenen Strukturen über verschiedene Längenskalen hinweg maßzuschneidern. Die Fähigkeit zur Nutzung struktureller Heterogenitäten und zur Schaffung von Materialien mit Eigenschaften, die sich im Laufe der Zeit verändern können, erweitert das Design von 3D-gedruckten Komponenten um eine vierte Dimension und ebnet den Weg für den 4D-Druck.

Ziel

Superior high-performance materials and CO2-free production technologies are key enablers to solving Europe’s current and future societal challenges [1]. In this context, additive manufacturing (AM) as one of the disruptive, green production technologies of our time “is expected to become a key manufacturing technology in the sustainable society of the future” [2].

However, alloys specifically designed for AM are rarely available, which prohibits AM from reaching its full potential. In contrast to conventional alloys and processing, alloys processed by AM are highly microstructurally heterogeneous. It is the aim of HeteroGenius4D to use the process-inherent conditions of highly precise, bottom-up AM approach to tailor these heterogeneous structures (e.g. grains/phases and their boundaries and orientations, chemical gradients, etc.) locally and spatially on various length scales. This is the basis for the novel design concept of heterogeneities-guided alloy design for AM. The potential to print local microstructures and properties in AM adds a 4th dimension to the design of 3D printed components; i.e. enables 4D printing.

AM-processed metals with increasing degree of heterogeneity (from pure element over solid solutions with chemical gradients to multi-phase alloys with further phases and gradients) are studied systematically. The process-structure-properties-performance linkages are identified and quantified by combining high-throughput material synthesis (using extreme high-speed laser material deposition) and characterization with physics-based simulation tools, enabling a comprehensive integrated computational materials engineering (ICME) framework. The generated data serves as a basis for sophisticated data-driven (machine learning, ML) materials modelling and enables the establishment of an Experiments-ICME-ML optimal design approach for metal AM. Finally, the concept of heterogeneities-guided alloy design is generalised and transferred to graded components.

Programm/Programme

Gastgebende Einrichtung

TECHNISCHE UNIVERSITAT BERLIN
Netto-EU-Beitrag
€ 1 499 999,00
Adresse
STRASSE DES 17 JUNI 135
10623 Berlin
Deutschland

Auf der Karte ansehen

Region
Berlin Berlin Berlin
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 499 999,00

Begünstigte (2)