Descripción del proyecto
Avanzar en ámbitos clave de investigación relacionados con la aritmética de curvas
Las curvas algebraicas, formalmente definidas como una variedad algebraica de dimensión uno, incluyen círculos, elipses, parábolas e hipérbolas. Algunas curvas algebraicas tienen muchos puntos racionales (puntos para los que todas las coordenadas son números racionales), pero algunas curvas solo tienen unos pocos. Las curvas algebraicas y la naturaleza de sus puntos racionales, una interacción entre aritmética y álgebra, han fascinado a los matemáticos durante siglos. El proyecto CurveArithmetic, financiado por el Consejo Europeo de Investigación, hará avanzar ámbitos clave de investigación relacionados con la aritmética de curvas: un teorema de Mazur para una familia de curvas de Shimura unitarias, la heurística de Poonen-Rains para curvas elípticas y algunos casos de la conjetura de Beilinson-Bloch.
Objetivo
                                The study of the arithmetic of curves is as old as mathematics itself and takes on many forms. In some cases, such as Fermat's Last Theorem or  Mazur's torsion theorem, one tries to prove that a sequence of curves with growing genus has no interesting rational points.  In other cases, such as the study of rational points in families of elliptic curves, there is no way to classify all solutions, but one tries to understand what is happening on average. A third approach aims to link the existence of rational points on a given curve to the preponderance of points on the curve modulo larger and larger prime numbers. This is the idea behind the Birch and Swinnerton-Dyer conjecture, and its generalization, the Beilinson-Bloch conjecture.  
The proposed research makes progress in each of the three paradigms above. In corresponding order, we propose a Mazur-type theorem for a family of unitary Shimura curves, by exploiting the Jacquet-Langlands correspondence and a connection with Prym varieties. A special case of this result would give a classification of torsion points in a family of genus three bielliptic Jacobians.  Second, we propose an approach to the Poonen-Rains heuristics for elliptic curves by combining twisting methods with Bhargava's geometry-of-numbers methods for universal families.  Using similar methods, we aim to show that Hilbert's tenth problem has a negative answer over every number field. Third, we study certain instances of the Beilinson-Bloch conjecture for the degree 3 motive of the Jacobian of a curve with complex multiplication.  The strategy involves the construction of an Euler system composed of CM Ceresa cycles.  Related work will explore torsion and infinite generation phenomena for Ceresa cycles, as well.
                            
                                Ámbito científico (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas:   El vocabulario científico europeo..
                                                
                                            
                                        
                                                                                                
                            
                                                                                                CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
                                Palabras clave
                                
                                    
                                    
                                        Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
                                        
                                    
                                
                            
                            
                        Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
            Programa(s)
            
              
              
                Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
                
              
            
          
                      Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
- 
                  HORIZON.1.1 - European Research Council (ERC)
                                      PROGRAMA PRINCIPAL
                                    
 Ver todos los proyectos financiados en el marco de este programa
            Tema(s)
            
              
              
                Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
                
              
            
          
                      
                  Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
            Régimen de financiación
            
              
              
                Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
                
              
            
          
                      Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-ERC - HORIZON ERC Grants
Ver todos los proyectos financiados en el marco de este régimen de financiación
              Convocatoria de propuestas
                
                  
                  
                    Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
                    
                  
                
            
                          Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2022-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
91904 JERUSALEM
Israel
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.
 
           
        