Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Arithmetic of Curves and Jacobians

Descripción del proyecto

Avanzar en ámbitos clave de investigación relacionados con la aritmética de curvas

Las curvas algebraicas, formalmente definidas como una variedad algebraica de dimensión uno, incluyen círculos, elipses, parábolas e hipérbolas. Algunas curvas algebraicas tienen muchos puntos racionales (puntos para los que todas las coordenadas son números racionales), pero algunas curvas solo tienen unos pocos. Las curvas algebraicas y la naturaleza de sus puntos racionales, una interacción entre aritmética y álgebra, han fascinado a los matemáticos durante siglos. El proyecto CurveArithmetic, financiado por el Consejo Europeo de Investigación, hará avanzar ámbitos clave de investigación relacionados con la aritmética de curvas: un teorema de Mazur para una familia de curvas de Shimura unitarias, la heurística de Poonen-Rains para curvas elípticas y algunos casos de la conjetura de Beilinson-Bloch.

Objetivo

The study of the arithmetic of curves is as old as mathematics itself and takes on many forms. In some cases, such as Fermat's Last Theorem or Mazur's torsion theorem, one tries to prove that a sequence of curves with growing genus has no interesting rational points. In other cases, such as the study of rational points in families of elliptic curves, there is no way to classify all solutions, but one tries to understand what is happening on average. A third approach aims to link the existence of rational points on a given curve to the preponderance of points on the curve modulo larger and larger prime numbers. This is the idea behind the Birch and Swinnerton-Dyer conjecture, and its generalization, the Beilinson-Bloch conjecture.

The proposed research makes progress in each of the three paradigms above. In corresponding order, we propose a Mazur-type theorem for a family of unitary Shimura curves, by exploiting the Jacquet-Langlands correspondence and a connection with Prym varieties. A special case of this result would give a classification of torsion points in a family of genus three bielliptic Jacobians. Second, we propose an approach to the Poonen-Rains heuristics for elliptic curves by combining twisting methods with Bhargava's geometry-of-numbers methods for universal families. Using similar methods, we aim to show that Hilbert's tenth problem has a negative answer over every number field. Third, we study certain instances of the Beilinson-Bloch conjecture for the degree 3 motive of the Jacobian of a curve with complex multiplication. The strategy involves the construction of an Euler system composed of CM Ceresa cycles. Related work will explore torsion and infinite generation phenomena for Ceresa cycles, as well.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2022-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

THE HEBREW UNIVERSITY OF JERUSALEM
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 500 000,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 500 000,00

Beneficiarios (1)

Mi folleto 0 0