Project description
Exploring the role of centromeres in cellular phenotypes
All somatic cells have the same genetic information, a complete copy of the genome enabling them to produce any of the millions of proteins encoded. Individual cells produce only a fraction of these according to their functions. Could the centromere play a role? The centromere, a region of DNA that links sister chromatids and attaches to the spindle during cell division, is also among the 5 % of human DNA whose sequences are not fully described. Centromeres’ sequences and sizes vary across tissues, between individuals and in disease states. The ERC-funded CentroFun project will investigate genetic variation in human centromeres and how differences in sequence, structure and function might drive cellular phenotypes.
Objective
The last decades have seen an extraordinary leap in our knowledge of the human genome and its role in health and disease. Yet, approximately 5% of our DNA still lacks sequence annotation and has been largely excluded from functional and disease-association studies. These genomic gaps include DNA repeats such as centromeres, which are large tandem arrays of alpha-satellite DNA. Centromeres chromatin is functionally essential for chromosome segregation serving as the basal template for the mitotic kinetochore. A recent breakthrough has been the complete genome assembly, including centromeres, of a haploid cell line derived from fetoplacental growth of a molar pregnancy. However, centromeres sequence and size vary across tissues, between individuals and in disease states. The main challenges are to understand how is centromere variation generated and especially, the consequences at a functional level. The specific objectives of my project are: (1) Identify the mutagenic processes and DNA repair responses operating at centromeres; (2) Determine the impact of centromeres sequence variation on chromatin structure, kinetochore function and chromosome behavior; and (3) Understand how these changes contribute to genome instability, cellular phenotypes and disease predisposition. The originality of this project is to follow a multidisciplinary approach that combines experimental studies spanning structural biochemistry to cell biology and bioinformatic analyses, that will benefit from the information on centromere reference already available and soon to be generated. The proposed research therefore represents a very appropriate and timely contribution to provide an integrated view of human centromere variation and its role in determining phenotypic traits. Furthermore, it will provide important insight on the functional role of the missing genome in human diseases and promises to yield key information and tools for expanding this novel field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry
- natural sciences biological sciences genetics DNA
- medical and health sciences clinical medicine obstetrics
- natural sciences biological sciences genetics chromosomes
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.