European Commission logo
English English
CORDIS - EU research results
CORDIS

The malaria chemical atlas: Revealing the parasite-host functional interactome

Project description

Uncovering the functional chemicals of malaria

Malaria is a lethal parasitic illness, capable of disturbing cellular communication upon invasion of the bloodstream by Plasmodium falciparum. This microorganism employs extracellular vesicles to communicate, secreting chemical inducers like metabolites and peptides. This communication serves to coordinate critical decisions for the parasite’s survival and control over neighbouring host cells. The ERC-funded MalChemAtlas project aims to amalgamate the powers of chemical, biophysical and omics technologies with machine learning. This collaborative effort seeks to unveil and thoroughly characterise the functional chemicals that play a pivotal role in enabling parasite density, growth and sexual development. These chemicals govern the interplay between the parasite and circulating host immune cells, as well as naïve red blood cells. Additionally, their influence extends to downstream signalling cascades within the host’s innate and adaptive immunity systems.

Objective

Malaria is the most life-threatening parasitic disease in humans. Invasion of the malaria parasite, Plasmodium falciparum (Pf), into the blood circulation rewires the harmonious networking between the resident cells.

Until recently, Pf was not thought to be able to communicate when nested within infected human red blood cells (RBCs). However, we and others have laid the foundations of Pf communication via extracellular vesicles.

We now hypothesize that in order to survive in the hostile host environment, Pf secretes chemical inducers (e.g. metabolites, peptides) to actively coordinate life decisions as a group and to control the surrounding host cells. Remarkably, we obtained proof-of-principle preliminary results in the form of an isolated, active chemical fraction that inhibits Pf population growth in a density-dependent manner.

Our overarching goal in MalChemAtlas is to expose this yet-to-be-revealed mode of communication in malaria: cell-to-cell chemical signaling. We will combine analytic chemical, biophysical and omics technologies with machine-learning approaches to comprehensively reveal and characterize the functional chemicals that: I) facilitate parasite density, growth and sexual development (parasite-parasite signaling), II) dictate parasite crosstalk with circulating host immune cells and naïve RBCs (parasite-host communication), and III) affect downstream signaling cascades between the host’s innate and adaptive immunity (host-host communication).

In this effort, we will leverage our extensive (HPLC-based) analytical fractionation pipeline, combined with NMR and metabolomics analyses, for identifying malaria-secreted autoinducers.

Our preliminary findings demonstrate the potential of our basic research to be applied to the translational level of intervention.
Identifying “natural chemical killers” offers a previously unexplored direct strategy to fight malaria - the highest gain we can ask for when researching this deadly disease.

Host institution

WEIZMANN INSTITUTE OF SCIENCE
Net EU contribution
€ 2 000 000,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 2 000 000,00

Beneficiaries (1)