Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Universal Geometric Transfer Learning

Description du projet

Une nouvelle approche pour les données 3D

Dévoiler les secrets cachés dans des données 3D complexes représente un défi de taille. Les méthodes existantes, souvent entraînées à nouveau pour chaque tâche, se heurtent au fait qu’elles ignorent des connaissances partagées précieuses et ne parviennent pas à se généraliser de manière efficace. En raison du volume limité de données d’entraînement, ces approches sont souvent insuffisantes dans les applications pratiques. Dans ce contexte, le projet VEGA, financé par le CER, développera un cadre universel pour l’apprentissage par transfert. VEGA vise à libérer le potentiel des modules pré-entraînables et de l’analyse multi-échelle. Cette avancée promet de transcender les limites posées par la rareté des données d’entraînement, permettant des applications allant du suivi de l’évolution des systèmes biologiques à la préservation du patrimoine culturel. La stratégie visionnaire de VEGA annonce une nouvelle ère d’outils de modélisation adaptables, prêts à révolutionner divers domaines dépendant de l’analyse de données géométriques.

Objectif

In this project, we propose to develop a theoretical and practical framework for transfer learning with geometric 3D data. Most existing learning-based approaches, aimed at analyzing 3D data, are based on training neural networks from scratch for each data modality and application. This means that such methods, first, ignore the wider information overlap that might exist across different tasks and object or scene categories, and, second, tend to generalize poorly beyond the specific scenarios for which they are trained. Even more fundamentally, the majority of existing techniques are limited to problem settings in which sufficient amount of training data is available, making them ill-adapted in many practical applications with limited supervision.

In this project, we suggest to take a fundamentally different approach to geometric data analysis: rather than designing independent application or class-specific solutions, we propose to develop a theoretical and practical framework for geometric transfer learning. Our main goal will be to develop universally-applicable methods by combining powerful pre-trainable modules with effective multi-scale analysis and fine-tuning, given minimal task-specific data. The overall key to our study will be analyzing rigorous ways, both theoretically and in practice, in which solutions can be transferred and adapted across problems, semantic categories and geometric data types.

Such an approach will open the door to fundamentally new tasks and modeling tools, applicable to any geometric data analysis scenario, regardless of the amount of training data available. This would allow, for example, to track the evolution of biological systems, by studying the underlying complex 3D shape dynamics, or to analyze variability in object and scene collections consisting of 3D scans of previously unseen shape categories, crucial in cultural preservation and life science applications, among myriad others.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2022-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

ECOLE POLYTECHNIQUE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 999 490,00
Adresse
ROUTE DE SACLAY
91128 Palaiseau Cedex
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Essonne
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 999 490,00

Bénéficiaires (1)

Mon livret 0 0