Project description
Plasmonic nanostructures offer hope for faster and denser data storage and processing
The electronic industry has advanced into the nanoworld following Moore’s law. However, data manipulation and storage lag behind, creating an ultrafast technology gap. While processors operate at gigahertz speeds, magnetic storage and memory devices are slower, requiring a few nanoseconds. Ultrafast light pulses have shown potential in manipulating magnetic orders on short time scales, yet their use is limited to micrometre scales – unsuitable for high-density storage. The ERC-funded FemtoMagnet project plans to use plasmonic nanodevices to generate ultrashort, intense and reversible magnetic field pulses at the nanoscale. By engineering innovative nanostructures to control light-matter interactions, the proposed research should allow manipulating magnetic domains in just femtoseconds. This has important implications for ultrafast data storage and processing.
Objective
While the electronic industry has successfully entered the nanoworld following Moore’s law, the speed of manipulating and storing data lags behind, creating the so-called ultrafast technology gap. Processors already have a clock speed of a few gigahertz, while the storage on a magnetic hard disk requires a few nanoseconds. This bottleneck can also be found in magnetic random access memory devices.
The use of ultrafast pulses of light has demonstrated effectiveness in manipulating magnetic orders on very short time scales. However, the physical processes involved are still poorly understood, and such a control reaches the micrometer scale at best, effectively preventing their use for high-density data storage.
FemtoMagnet aims to develop an entirely new approach to manipulating magnetic domains based on the engineering of plasmonic nanodevices. For that, these devices will optically generate ultra-short, intense, and reversible pulses of magnetic field at the nanoscale, a challenge that no other technique can achieve so far.
To meet its ambitious goals, my research program engineers innovative plasmonic nanostructures inversely-designed to tailor light-matter interactions at the nanoscale. Under the right illumination conditions, the electromagnetic fields generated by the nanostructure set the electrons in a metal (such as in a coil) in pseudo-continuous drift motion, in turn yielding the creation of a strong stationary magnetic field.
By specifically creating and manipulating ultrafast, strong, confined and reversible pulses of magnetic field in an all-optical fashion, my research program will enable the manipulation of magnetic domains at the nanoscale and over very short timescales (a few tens of femtoseconds), opening the way to applications in ultrafast data storage and data processing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.