Objective
Single-celled marine plankton, that sustain oceanic food webs and strongly impact the global carbon cycle, can establish various kinds of symbioses to gain energy. Plastid symbiosis, whereby host cells temporarily integrate microalgal cells (photosymbiosis) or just their photosynthetic plastids (kleptoplastidy) as intracellular solar-powered carbon factories, is a key interaction in worldwide surface oceans. Plastid symbiosis was at the origin of a major evolutionary innovation that spread photosynthesis across eukaryotes, transforming the biosphere. Despite this ecological and evolutionary importance, very little is known about how a photosynthetic machinery is structurally and metabolically integrated into a host cell and what mechanisms allow cells to transport sugars, the main photosynthetic product and energetic currency. The central concept of SymbiOcean is that plastid symbiosis forms a metabolic unit where the source (engulfed microalgae/plastid) is metabolically engineered by the sink (host) to produce and transfer carbon energy. Working with original non-model symbiotic systems, I will develop novel imaging and genetic tools to mechanistically dissect this key metabolic interaction at different scales. Combining multimodal subcellular imaging and photophysiology, I will first unveil how the photosynthetic machinery is morphologically and metabolically remodeled in symbiosis to provide benefits to the host. I will then investigate the identity, localization and role of sugar transporters underlying the source-sink carbon flux in plastid symbiosis, providing the basis to evaluate the evolutionary and environmental forces that shape the metabolic connection. Crossing boundaries between structural biology, eco-physiology and evolution, this ambitious project will resolve fundamental mechanisms in widespread planktonic symbioses, advancing our understanding of the functioning and carbon flux of marine ecosystems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences atmospheric sciences meteorology biosphera
- natural sciences biological sciences ecology ecosystems
- natural sciences biological sciences biological behavioural sciences ethology biological interactions
- natural sciences biological sciences botany
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.