Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

An electrochemically produced oxidiser for modular, onsite generation of HYdrogen PERoxide

Project description

A more efficient, eco-friendly approach to hydrogen peroxide

Hydrogen peroxide is an important raw material in the chemical, pulp and paper and textile industries, used primarily as an oxidant and bleaching agent. Currently, hydrogen peroxide is manufactured almost exclusively by the natural gas-based autooxidation/anthraquinone process, and it is shipped as a diluted solution to end-users. The state-of-the-art thus has a large CO2 footprint. The EU-funded HYPER project will seek to transform hydrogen peroxide production from this large-volume, energy-intensive chemical process to a more efficient, scalable and modular electrochemical process. HYPER’s innovation lies in the use of persulfate as a stable oxidisation intermediate, allowing both renewable electricity storage and on-site, on-demand hydrogen peroxide production.

Objective

Hydrogen peroxide (H2O2) has many industrial applications, e.g. as chemical reagent and bleaching agent for textiles and wood pulp. The established production route of H2O2 is the autooxidation/ anthraquinone process, which uses natural gas as both feedstock and energy source.The main objective of HYPER is the demonstration, in industrially relevant environments, of a scalable, modular electrochemical process for H2O2 production with improved efficiency compared to the state-of-art. It will bridge this production with downstream integration into diverse value chains, pulp and paper, textiles and coatings/chemicals, in which strong market opportunities exist for modular, on-site and on-demand H2O2 production. The central innovation in HYPER is the use of persulfate as a stable oxidization intermediate, allowing both storage of renewable electricity and on-demand H2O2 production. HYPER will thus help transform H2O2 production from a large-volume, energy intensive chemical process to a smaller-scale, modular, renewable, electrochemical process. Demonstration of electrochemical production technologies at TRL6 and integration into the three aforementioned value chains will allow HYPER to evaluate the potential of the electrochemical production for further TRL development.HYPER will advance a safe, circular, and cost competitive electrified technology for H2O2 production. The estimated production price of ca. 0.6 €/kg can be further decreased by the storage of renewable electricity. Implementation of HYPER technology will decrease life cycle CO2 emissions in H2O2 production by up to 75% when 100% renewable energy sources are used. Estimated CO2 emissions reductions are from 1.1 Mt CO2/yr in 2030 to 1.4Mt CO2/yr in 2045, for cumulative CO2 emission savings of more than 19 Mt by 2045. Energy consumption of the HYPER process are estimated to be over a third less than the established production route.The HYPER consortium consists of 4 RTOs, 6 SMEs and 3 industrial partners.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL4-2022-TWIN-TRANSITION-01

See all projects funded under this call

Coordinator

SINTEF AS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 054 513,75
Address
STRINDVEGEN 4
7034 Trondheim
Norway

See on map

Region
Norge Trøndelag Trøndelag
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 126 756,25

Participants (14)

My booklet 0 0