Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

An electrochemically produced oxidiser for modular, onsite generation of HYdrogen PERoxide

Description du projet

Une approche plus efficace et plus écologique du peroxyde d’hydrogène

Servant principalement d’oxydant et d’agent de blanchiment, le peroxyde d’hydrogène est une matière première importante pour les industries des produits chimiques, des pâtes et papiers et du textile. Actuellement, le peroxyde d’hydrogène est fabriqué presque exclusivement au moyen du procédé d’auto-oxydation/anthraquinone utilisant du gaz naturel, et il est expédié aux utilisateurs finaux sous la forme d’une solution diluée. Cette technologie de pointe a donc une empreinte CO2 importante. Le projet HYPER, financé par l’UE, entend révolutionner la production de peroxyde d’hydrogène en transformant ce procédé chimique à grand volume et énergivore en un procédé électrochimique plus efficace, évolutif et modulaire. L’innovation d’HYPER réside dans l’utilisation du persulfate comme intermédiaire d’oxydation stable, ce qui permet à la fois de stocker de l’électricité renouvelable et de produire du peroxyde d’hydrogène in situ et à la demande.

Objectif

Hydrogen peroxide (H2O2) has many industrial applications, e.g. as chemical reagent and bleaching agent for textiles and wood pulp. The established production route of H2O2 is the autooxidation/ anthraquinone process, which uses natural gas as both feedstock and energy source.The main objective of HYPER is the demonstration, in industrially relevant environments, of a scalable, modular electrochemical process for H2O2 production with improved efficiency compared to the state-of-art. It will bridge this production with downstream integration into diverse value chains, pulp and paper, textiles and coatings/chemicals, in which strong market opportunities exist for modular, on-site and on-demand H2O2 production. The central innovation in HYPER is the use of persulfate as a stable oxidization intermediate, allowing both storage of renewable electricity and on-demand H2O2 production. HYPER will thus help transform H2O2 production from a large-volume, energy intensive chemical process to a smaller-scale, modular, renewable, electrochemical process. Demonstration of electrochemical production technologies at TRL6 and integration into the three aforementioned value chains will allow HYPER to evaluate the potential of the electrochemical production for further TRL development.HYPER will advance a safe, circular, and cost competitive electrified technology for H2O2 production. The estimated production price of ca. 0.6 €/kg can be further decreased by the storage of renewable electricity. Implementation of HYPER technology will decrease life cycle CO2 emissions in H2O2 production by up to 75% when 100% renewable energy sources are used. Estimated CO2 emissions reductions are from 1.1 Mt CO2/yr in 2030 to 1.4Mt CO2/yr in 2045, for cumulative CO2 emission savings of more than 19 Mt by 2045. Energy consumption of the HYPER process are estimated to be over a third less than the established production route.The HYPER consortium consists of 4 RTOs, 6 SMEs and 3 industrial partners.

Coordinateur

SINTEF AS
Contribution nette de l'UE
€ 1 054 513,75
Adresse
STRINDVEGEN 4
7034 Trondheim
Norvège

Voir sur la carte

Région
Norge Trøndelag Trøndelag
Type d’activité
Research Organisations
Liens
Coût total
€ 1 126 756,25

Participants (13)