Project description
Innovative 3D multi-material joints for aircraft
Rivets offer incredible fastening capabilities for both light- and heavy-duty applications. They have been popular in aircraft construction for many years, used to join aluminium sheets. However, riveted joints require regular inspection and maintenance, while the joint surfaces need to be painted after the aircraft assembly. Furthermore, in composite aircraft, rivet holes could compromise the integrity of fibres. The EU-funded MIMOSA project aims to develop 3D multi-material components based on metals and carbon-fibre composites. The proposed materials could achieve greater performance at a fraction of the cost. A vertical stabiliser structure will be fabricated to assess the new joint manufacturing technology.
Objective
The aim of MIMOSA Project is the development of joined multi-material structures with new concepts able to exploit the digital and hybrid processes in order to achieve higher technological and economic performances with respect to current traditional joints. Furthermore, MIMOSA will lead to the application of circularity of materials and production by integrating the recycling, starting from the ideation phase of product and business. These ambitions and associated needs will be achieved with innovative technology and competitive process for multi-material joints between AlSi10Mg alloy for additive manufacturing (AM) and composites (CFRP, carbon fiber-reinforced polymers). The project proposes new joint concept design, after-service materials regeneration (50% of metals and 90% of CFRP), weight (-51%) and lead time (-65%) reduction and overall process environmental footprint reduction. A prototype of vertical stabilizer (VS) structure will be fabricated and analyzed as the business case of the Project. At the end of the Project, TRL6 is expected by starting at TRL3. Many aerostructures are composed of CFRP skin and metal parts coupled by rivets. However this kind of joint shows some drawbacks: (1) long time for assembling, (2) loss of fibers integrity due to rivet holes, (3) rivets payload, (4) joint surfaces treatment with paints needed, (5) rivets failure issues, (6) hard inspection and maintenance of rivets. MIMOSA Project will go beyond the state of the art in building aircraft structures by providing: (1) scientific research-driven integration of different design fields and fabrication processes, (2) new AM-CFRP multi-material joint concept, (3) reduced waste of materials thanks to recycling and associated economic value generation, (4) enhancement of process performances of energy consumption, lead-time and cost, (5) fabrication of a vertical stabilizer prototype (OB4) for narrow body airliners with the new AM-CFRP joint as business case.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering waste management waste treatment processes recycling
- engineering and technology materials engineering fibers
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences chemical sciences polymer sciences
- engineering and technology materials engineering fibers carbon fibers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.4 - Advanced Materials
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-RESILIENCE-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10129 Torino
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.