Project description
Autonomous energy-efficient optical networks
Upcoming generations of mobile communication networks need to support the use of emerging technologies to meet a wide range of consumer and business demands, including real-time data transmission for mission-critical applications and transport of virtual and augmented reality services. The EU-funded SEASON project aims to design and validate an energy-saving optical network infrastructure that can support capabilities beyond 5G while taking into account flexibility. It proposes to take advantage of streaming telemetry and AI-based service management to achieve near real-time operations, with a distributed system based on multiple agents and closed control loops. The project will include an alliance of European telecom operators, system vendors, distinguished research centres and academia.
Objective
The goal of the SEASON project is to design and validate a sustainable transport network infrastructure able to support beyond 5G and new emerging services. The SEASON infrastructure will rely on the joint usage of Multi-Band (MB) and Space Division Multiplexing (SDM), spanning the access, aggregation, and metro/long-haul segments, supporting the requirements for x-haul, further integrating the packet/optical and computing layers, and targeting cost-effective capacity increase. A critical objective of such architecture is to ensure energy efficiency. SEASON will rely on power-efficient Digital Signal Processing (DSP), MBoverSDM optical switching, point-to-multipoint transceivers allowing traffic aggregation/router bypassing, and converged packet-optical solutions reducing the number of O/E/O conversions. Such complex infrastructure requires rethinking the control and orchestration systems towards autonomous optical networks, addressing not only the integration - in overarching control systems - of the Radio Access Network (RAN), access and transport segments but also adopting more agile DevOps methodologies. SEASON will leverage on cognitive networks powered by streaming telemetry, real-time network measurements and Artificial Intelligence/Machine Learning (AI/ML)-aided service management and orchestration for near-real time network operation, moving intelligence as close as possible to the data plane, and devising a distributed system based on multiple communicating agents and data-driven closed control loops.
SEASON will have a clear impact on the society, in a context with increased needs of connectivity and higher capacity demand required for services such as VR/AR.
The SEASON consortium includes major European telecom operators (Telefonica, TIM), major vendors (ADVA, Infinera P/G, Ericsson), three consolidated SMEs (Accelleran, Wings and WestAquila) and four top-reputed research centres and academia (CNIT, CTTC, Fraunhofer HHI, and UPC).
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Keywords
Programme(s)
- HORIZON.2.4 - Digital, Industry and Space Main Programme
Funding Scheme
HORIZON-JU-RIA - HORIZON JU Research and Innovation ActionsCoordinator
43124 Parma
Italy
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.