Objective
Genome editing using RNA-guided CRISPR-Cas nucleases (Clustered Regularly Interspaced Short Palindromic Repeats that associate with CRISPR associated proteins) has radically altered life sciences, enabling genome manipulation in living organisms. However, their use is limited by dependence on DNA Damage Response (DDR), which restricts genome editing to dividing cells. Further, these nucleases cannot handle DNA cargos large enough to harbour regulatory DNA circuitry, thus precluding genome engineering. In INTETOOLS, I will overcome these limitations by dissecting and repurposing CRISPR Associated Transposon (CAST) systems into genome engineering tools. CASTs are naturally occurring prokaryotic protein–RNA machineries consisting of an inactive CRISPR effector complex, which associate with Tn7 family transposons to insert large DNA cargos. Knowledge of their molecular mechanisms is scarce, which prevents their practical application in genome engineering. Accordingly, in Objective 1, I will investigate the architecture of different CASTs to obtain fundamental knowledge of their RNA-guided integration. I will then use this knowledge in Objective 2, to dissect their mechanism underpinnings whereby CRISPR-Cas complexes associate with transposition complexes to insert with nucleotide accuracy DNA cargos. This will inform Objective 3, where I will design new CAST tools that will allow RNA-guided transposition in eukaryotic genomes. These revamped CASTs will be capable of inserting large DNAs with high precision, harbouring regulatory regions into eukaryotic genomes, enabling genome engineering in eukaryotes. I will test the redesigned CASTs in mammalian cell lines and at the organismal level by rescuing the eyeless mutant phenotype in Drosophila melanogaster. INTETOOLS will catalyse a conceptual leap propelling the field into a new era of genome engineering, with major biomedical and biotechnological applications especially in synthetic biology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- medical and health sciencesmedical biotechnologygenetic engineeringgene therapy
- natural sciencesbiological sciencessynthetic biology
- natural sciencesbiological sciencesgeneticsDNA
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- natural sciencesbiological sciencesgeneticsgenomeseukaryotic genomes
You need to log in or register to use this function
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
1165 Kobenhavn
Denmark