Objective
Synthetic materials exist in a broad variety of sizes, shapes and compositions leading to an impressive breadth of useful functions but tend to be case-specific. Living matter, in contrast, has the remarkable capability to sense, evolve, transform and adapt. Here, we propose to develop new DNA-encoded dynamic principles and implement them as molecular codes to program similar life-like characteristics in a variety of synthetic soft materials, ranging from evolutive DNA nanomachines to genetically encoded active interfaces. Various DNA nanostructures (DNA origamis, single-stranded tiles, DNA nanogrids) will be produced by a new concept of isothermal and reconfigurable DNA self-assembly, leading to user-defined self-assembled structures capable to adapt and morphologically transform, autonomously or in response to a stimulus. Coupling proteins to these reconfigurable nanoscaffolds will allow us to reconstitute dynamic synthetic metabolic pathways, design programmable catalytic switch or develop a new principle of nanostructure discovery by evolution. Beside encoding structural dynamics, we will also incorporate gene-containing DNA in interface-rich materials (films, drops, emulsions) to program, at a genetic level for the first time, the active behaviour and dynamic functionality of these systems. In situ cell-free expression of interfacially active proteins, such as BslA and hydrophobins, will allow us to control the interfacial properties (surface tension, visco-elasticity), either uniformly or with controlled spatio-temporal patterns. This will result in original genetically encoded active behaviours such as genetic Marangoni effects, propulsion, genophoresis or autonomous genetic sorting. Additional functionality will be brought by co-expressing useful proteins (enzymes, antibodies) at these interfaces, resulting in highly dynamic, reconfigurable, versatile and multifunctional soft materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesbiological sciencesgeneticsDNA
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsenzymes
You need to log in or register to use this function
Keywords
- Soft matter
- Soft materials
- Nanoscience
- Self-assembly
- DNA nanotechnology
- Smart materials
- Reconfigurable materials
- DNA self-assembly
- Protein
- Synthetic metabolism
- Evolution
- Nanostructure discovery
- Photo-actuation
- Gene expression
- Synthetic biolgoy
- Reconstituted systems
- Interfaces
- Interfacially active proteins
- Marangoni effect
- Self-propulsion
- Active Matter
- Microfluidics
- Antibody
- Enzyme
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
75230 Paris
France