Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Signaling decoded in ENhanCEr states – a molecular basis for plasticity in development and differentiation

Project description

Developmental plasticity: an unconventional role of transcription factors

Like a lock and key that open a door several blocks away, enhancer elements distant from the genes they regulate bind transcription factors (TFs) to regulate gene transcription. But what if the ‘key’, the TF binding factor, was always bound and its role was not direct enhancer activation? The ERC-funded SENCE project will explore this in the context of regulation of embryonic stem cell differentiation by extracellular signal-related kinase (ERK). The team has found that enhancer regulation in ERK signalling does not occur with TFs, which instead block future activation. The project will explore the fundamental nature of enhancer activity and whether uncoupling of transcriptional regulation from TF binding underpins developmental plasticity.

Objective

Transcription is regulated by transcription factors (TFs) bound at enhancer elements located long-distances from the genes they regulate. How does this account for dynamic responses to the environment via signaling? Canonical views invoke signal induced changes in TF expression/modification or cofactor localization, but here we suggest that TF occupancy could be present before and after the signal, establishing competence, ensuring plasticity and blocking premature commitment. For ERK signaling, a central regulator of embryonic stem cell (ESC) differentiation, we found enhancers were regulated via selective recruitment of RNA Polymerase II (RNAPII) and associated cofactors. In this case, TFs do not play a direct role in enhancer regulation, but safeguard future activation in response to changes in signaling. In the context of developmental biology this paradigm could explain the dynamic nature of cell specification in the early mammalian embryo. In this proposal, we seek to understand enhancer specific regulation by ERK, exploit our ability to manipulate ERK to disentangle mechanism and focus on preimplantation development to explore how these phenomena explain plasticity. To circumvent heterogeneity created by feedback inhibition we developed a unique ESC line for cell intrinsic and synchronous ERK induction. We combine these ESCs with rapid TF degradation mutants to isolate homogeneous cell states that can be exploited to generate unique datasets and identify key factors within ERK response. We address how coactivator phosphorylation promotes selective recruitment of Mediator/RNAPII, explore the fundamental nature of enhancer activity and ask how uncoupling of transcriptional regulation from TF binding underpins developmental plasticity. By exploiting our capacity to modulate enhancer activity via signaling, we not only address how signaling regulates transcription to drive differentiation choices, but how enhancers themselves regulate gene expression.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-ADG

See all projects funded under this call

Host institution

KOBENHAVNS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0