Project description
A soft, lightweight exoskeleton worn like a pair of pants could help people walk again
Many conditions, including spinal cord injury and stroke, can result in loss of lower-limb mobility, making walking impossible. For decades, there were very few options, if any, depending on the severity of the condition. More recently, integrated robotic exoskeletons have emerged as a promising way to partially restore function and help people walk again. However, most are heavy and cumbersome systems. Funded by the European Research Council, the STROLL project plans to develop a soft, wearable robotic exoskeleton akin to a pair of pants. It will harness advanced textile-based actuators, lower-body tactile sensors, and advanced locomotion control to restore the walking capability of patients with lower-body paralysis.
Objective
Imagine putting on a pair of pants, it feels soft like ordinary clothing fabrics, but unlike any other, this one is made of high-performance robotic soft actuators and soft sensors. This is my vision of future exoskeletons being just like everyday clothing, light, soft, and powerful enough to fully support the wearer.
The loss of the ability to walk is devastating for many suffering from stroke, spinal cord injury, and alike. An ergonomic, light-weight exoskeleton can surely help these patients to walk again autonomously. This is challenging due to large gaps between conventional rigid body dynamic-based walking control and soft structures because such an exoskeleton has to integrate high-performance soft mechatronics, to perform walking to an unprecedented extent. I am uniquely qualified to achieve this due to my extensive experience in the fields of robotics and neuroengineering, as well as my leading role in the engineering of world-leading high-performance humanoid robots which incorporate control, modelling, and experimental evaluation.
STROLL will develop a soft wearable robotic exoskeleton to restore the walking capability of patients with lower-body paralysis. The soft wearable exoskeleton that I propose to develop will combine ground-breaking innovations in advanced high-performance textile-based actuators, lower-body tactile sensors, and advanced locomotion control. STROLL will investigate new control strategies and methods for tactile-based control for balancing and walking.
As its ultimate goal, STROLL will take on the ambition to enable a lower-limb paralysed person to take a stroll in the park with an autonomous soft textile exoskeleton.
Despite the methodological difficulties and the uncertainty of the results, the project is more than worth pursuing, as the pay-off is highly significant to benefit the lives of millions of patients suffering from lower-limbs disorders.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologymaterials engineeringtextiles
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringroboticsautonomous robots
- engineering and technologymechanical engineeringmechatronics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- medical and health sciencesbasic medicineneurologystroke
Keywords
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
80333 Muenchen
Germany