Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

nanoVAST: a novel, non- viral LNP for precision payload delivery of genome editors and other cargo

Project description

Innovative particle for cell-specific delivery

Cell-specific cargo delivery is a critical issue in the field of RNA-based therapeutics. The delivery relies on lipid nanoparticles which encapsulate RNA, but this method lacks specificity. Viral vectors are currently the only tissue-specific cargo delivery option. Nevertheless, viral systems also have disadvantages, such as oncogenicity and pre-existing immunity to the viral carrier. The nanoVAST particle is a patented vesicular phospholipid bilayer densely decorated with a single protein that can be fused to a targeting molecule of interest through specific, efficient and separately patented chemistry. The EU-funded nanoVAST project proposes to use the nanoVAST particle to deliver specific RNA cargo to CD19+ B cells and functionally alter the targeted cells.

Objective

Cell-specific cargo delivery is a key remaining problem in the field of RNA-based therapeutics. Thus far, delivery has relied on lipid nanoparticles (LNPs) which encapsulate RNA with high efficiency, but broadly lack in specificity. Viral vectors are currently the only FDA approved tissue-specific cargo delivery option, with specificity being the result of manipulation of outer capsid proteins. However, viral systems are also associated with drawbacks such as oncogenicity, antigenicity and pre-existing immunity to the viral carrier itself. The ideal carrier system would involve LNP-efficient cargo encapsulation together with specific targeting in the absence of oncogenicity or immunogenicity.
DKFZ and Panosome GmbH have together developed this exact particle – the nanoVAST: a patented vesicular phospholipid bilayer densely decorated with a single protein that can be fused to a targeting molecule of interest through specific, efficient, and separately patented chemistry. Importantly, the attachment of the targeting component relies on a coupling of the vesicle to the targeting moiety, rather than a genetic manipulation of the carrier itself (as is the case with viral vectors), giving this system an unparalleled level of versatility. Additionally, our vesicular system is inherently fusogenic with target membranes, thus permitting cargo delivery directly to the cytoplasm and avoiding the reliance on the incredibly inefficient “endosomal escape” mechanism that plagues LNPs (it is estimated that conventional LNPs only deliver approximately 1% or less of their payload into the cytoplasm).
This ERC PoC proposes to use the nanoVAST particle to (a) deliver specific RNA cargo to CD19+ B cells; (b) transport within the cells this cargo to the endogenous RNA editing machinery and (c) functionally alter the surface of the targeted cells. Through the PoC we aim to accelerate nanoVAST, our precision payload delivery system, towards direct clinical applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-POC2

See all projects funded under this call

Host institution

DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 70 000,00
Address
IM NEUENHEIMER FELD 280
69120 Heidelberg
Germany

See on map

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0