Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Development and validation of a new magnetocaloric high-performance hydrogen liquefier prototype

Project description

H2 liquefaction via the magnetocaloric effect yields substantial cost and energy savings

Gaseous H2 takes up a lot of space, meaning there is less energy per unit volume, which complicates storage and transportation. It is also riskier to store and transport gaseous H2 relative to liquid H2. Hydrogen liquefaction is a promising route to encouraging large-scale deployment. It faces several challenges, including high energy consumption and costs. The EU-funded HyLICAL project will implement hydrogen liquefaction harnessing the magnetocaloric effect. It will increase energy efficiency by 20-50 %, reduce capital and operating expenses by at least 20 %, enable decentralised H2 production, removing the need for transportation, and be coupled to H2 production from renewables.

Objective

HyLICAL will contribute to reaching an energy demand of 8 kWh/kg and a liquefaction cost of <1.5 €/kg as targeted in the call by validating an innovative and energy-efficient liquefier prototype for the cryogenic region (< 120 K) based on magnetic refrigeration. The implementation of the magnetocaloric hydrogen liquefaction (MCHL) technology developed in HyLICAL offers the following perspectives: i) Increased energy efficiency of >20% for small liquefaction volumes of <5 tonnes per day (TPD) and up to 50% for >5 TPD; ii) Reduced capital expenditures (CAPEX) and operating expenses (OPEX) by at least 20% in addition to the targeted energy savings; iii) Decentralized (local) production of liquid hydrogen (LH2), thus reducing the need for distribution and transport across long distances; iv) Coupling of the MCHL technology to hydrogen production from renewables (green hydrogen) for off-grid configurations; v) Integration into conventional liquefaction plants to increase their overall energy efficiency; vi) Application of the process for the liquefaction of hydrogen and for boil-off management of LH2 tanks.
The MCHL technology will enable the decentralized production of green LH2, in competition with LH2 from fossil sources, and will furthermore reduce the need to transport LH2 over large distances if there is a local green energy source available (e.g. bio-based or electricity from renewables). We will drive the Technology Relevance Level for MCHL technology from initially TRL 3 to TRL 5 at project end. This will be achieved by significantly increasing the liquefaction capacity of the demonstrator from the current SoA (<1 kg/day) to close to 100 kg/day. We will demonstrate that there are no intrinsic limitations that prevent the MCHL technology from being scaled up to suit flowrates above 100 TPD, as highlighted in the call, thus satisfying the need for large-scale production capacities needed in the heavy-duty mobility sector and elsewhere.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-JTI-CLEANH2-2022-1

See all projects funded under this call

Coordinator

INSTITUTT FOR ENERGITEKNIKK
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 731 250,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 731 250,00

Participants (11)

Partners (2)

My booklet 0 0