Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Magnetogenesis from Axion-SU(2) Inflation and applications to Gravitational Waves

Project description

Investigating magnetic field formation in the early universe

Magnetic fields are ubiquitous in the universe, but their origins and how they evolved over time still puzzle modern cosmologists. Recent findings from observing blazars (powerful sources of electromagnetic radiation) and the need to understand the initial ‘seed’ field that fuels the growth and amplifies these magnetic fields have motivated the study on their primordial origins. Funded by the Marie Skłodowska-Curie Actions programme, the MASUGRAV project will combine expertise across different fields to study this. Researchers from early universe physics, astrophysics, magnetohydrodynamics and advanced numerical tools will explore magnetic field production in models of axion inflation coupled with the standard model of particle physics. The team will go beyond existing studies of axion-U(1) magnetogenesis models, investigating chiral magnetic field production in the axion-SU(2) case.

Objective

Magnetic fields are ubiquitous in our Universe. The question of their origin and subsequent evolution is a challenge for modern
cosmology. Recent bounds on magnetic fields from blazar observations, together with the requirement for initial “seed” field for dynamo and compression amplification mechanisms motivate the study of possible primordial origins of magnetic fields. This project combines expertise in early universe physics with an expertise in astrophysics, magnetohydrodynamics and advanced numerical tools to study the production of magnetic fields in models of axion inflation coupled to the Standard Model of particle physics - so-called axion-SU(2) inflation. The results of this project will trace the origin of magnetic fields from the early to the present-day universe and confront the axion-SU(2) magnetogenesis by cross-correlating cosmic microwave background and blazar observations. To achieve this I will go beyond the current understanding of the simpler so-called axion-U(1) magnetogenesis models widely studied until now, and study the viability of chiral magnetic field production in the axion-SU(2) case. Furthermore, I will develop new numerical tools to determine how the presence of feedback mechanisms affect magnetogenesis. I will also compute the spectrum of gravitational waves generated by axion-SU(2) models in the radiation-dominated era of the early universe, and compare it to other known sources of gravitational waves such as cosmic strings to understand potential differences in the observational predictions. My experience in early universe physics together with the present world-leading expertise in magnetohydrodynamics at Nordita make it an ideal place for a two-way transfer of knowledge essential for the implementation of this project. This project aims to bridge astrophysics and early universe physics, and to develop cutting-age numerical tools that may also be applicable in quantum physics and condensed matter physics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

STOCKHOLMS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 222 727,68
Address
UNIVERSITETSVAGEN 10
10691 Stockholm
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0