Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Higher-spin symmetry and duality in (super)conformal field theory

Project description

Conformal and superconformal field theory: higher-spin and/or duality symmetries

Conformal field theories (CFTs) are quantum field theories that are invariant under conformal (angle-preserving) transformations. Superconformal field theories are quantum field theories with the highest symmetries. CFTs possessing higher-spin and/or duality symmetries and their supersymmetric extensions have attracted significant interest over the last decade. With the support of the Marie Skłodowska-Curie Actions programme, the HigherSpinCFT project will develop novel supersymmetric techniques to analyse important questions relating to superconformal field theories and dualities between quantum field and gravity theories. The pioneering project will also study the quantum properties of the recently discovered non-linear generalisation of Maxwell's electrodynamics (Modified Maxwell theory), which is conformal and duality invariant, all of relevance to high-energy physics.

Objective

Conformal symmetry is the maximal spacetime symmetry in relativistic quantum field theory. Such a symmetry is also realised in condensed matter systems at second order phase transitions. Conformal field theories possessing higher-spin and/or duality symmetries, along with their supersymmetric extensions, have recently been the focus of enormous interest worldwide. This proposal puts forward a research program to explore the dynamics and quantum aspects of such theories. Using recent advances in group theoretic formalism to compute correlation functions, the project aims to develop novel, manifestly supersymmetric techniques used for comprehensive analysis of three-point functions for conserved higher-spin current multiplets in superconformal field theories in Minkowski and Anti-de Sitter backgrounds – both playing pivotal roles in deciphering celebrated dualities between quantum field and gravity theories. Another goal is to study, for the first time, the quantum properties of the recently discovered Modified Maxwell (ModMax) theory. The latter is a unique non-linear extension of Maxwell's electrodynamics which is conformal and duality invariant. It has opened new avenues, all to be discovered, to study new classes of non-analytic conformal field theories. The project outcomes will advance our knowledge of scattering amplitudes and their relation to anomalies of superconformal field theories on curved backgrounds, while at the same time giving new insight into the field of non-linear electrodynamics. These results will be of major significance for a wide range of areas of modern mathematical and theoretical high-energy physics including string theory, gravity, cosmology and condensed matter.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

ISTITUTO NAZIONALE DI FISICA NUCLEARE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 172 750,08
Address
Via Enrico Fermi 54
00044 Frascati
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0