Description du projet
Un outil d’analyse automatisé pour la gestion du traumatisme médullaire
Les traumatismes médullaires affectent gravement la qualité de vie des patients. Les examens neurologiques et les IRM actuels ne permettent souvent pas d’évaluer la gravité du traumatisme médullaire en raison de la nature complexe de l’analyse et de la disparité des protocoles entre les hôpitaux. Avec le soutien du programme Actions Marie Skłodowska-Curie, le projet SCIseg va développer un outil d’analyse automatisé pour améliorer la gestion des traumatismes médullaires. Cet outil s’appuiera sur des modèles d’apprentissage profond pour la segmentation automatique de la moelle épinière et des lésions à partir d’images IRM, contournant les limites de la segmentation manuelle. Les modèles seront entraînés sur un ensemble de données IRM de plusieurs institutions afin de garantir leur fiabilité dans tous les hôpitaux. Le projet va également générer des mesures quantitatives de la gravité du traumatisme médullaire à partir des données segmentées.
Objectif
Traumatic spinal cord injury (tSCI) markedly reduces patients quality of life and economically burdens health systems. Neurological examinations and clinical magnetic resonance imaging (MRI) scans are currently insufficient for the proper classification of the tSCI baseline level (i.e. severity). Although MRI scans are routinely employed in tSCI patients, the MRI potential is not fully utilised due to the complexity of the analysis and diversity of MRI data across hospitals. The aim of this project is to propose a fully automatic and reproducible analysis tool that could be run by clinicians to improve the clinical management of tSCI patients. First, deep learning models for automatic spinal cord and lesion segmentation from MRI images will be developed to go beyond the currently used error-prone and time-consuming manual segmentations. The models will be trained on a multi institutional MRI dataset to be robust to MRI data heterogeneity across hospitals. Then, quantitative measures of the tSCI severity will be automatically computed from the segmented structures (i.e. spinal cord and lesions) and employed within the statistical model to predict tSCI severity. Finally, the developed methodology will be translated to the real-world healthcare system and tested on a prospectively acquired dataset of tSCI patients. Importantly, deep learning models, analysis pipeline, and statistical model will be seamlessly integrated into the current state-of-the-art ecosystem for spinal cord MRI data analysis and made publicly available to facilitate open science and reproducibility across hospitals. The project will create the first step in the improvement of care and clinical management in millions of patients with tSCI worldwide. In the longer term, after demonstrating the clinical relevance of the proposed tools, we assume that advanced MRI-based methods will be adopted by the larger clinical community for more personalised care.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2022-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
771 47 Olomouc
Tchéquie
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.