Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Quantisation of moduli spaces: Hitchin connections and isomonodromic deformations

Objetivo

Our goal is to construct generalisations of the Hitchin and Wess--Zumino--Witten (WZW) and Knizhnik--Zamolodchikov (KZ) connections, both in geometric and deformation quantisation, and of their associated monodromy representations.

The Hitchin connection achieved the quantisation of compact Chern--Simons theory and resulted in the construction of a topological quantum field theory. A different projectively flat connection provides a viable mathematical definition of correlation functions in the WZW model for conformal field theory. The resulting projectively flat vector bundles are isomorphic, and their monodromies have far-reaching applications in low-dimensional topology/geometry (quantum invariants of knots/3-manifolds) and representation theory (of mapping class/quantum/braid groups).

Our guiding viewpoint is that the connections of Hitchin/WZW can be derived from the quantisation of moduli spaces of connections on Riemann surfaces. We will extend this further, focusing on meromorphic connections with high-order poles (i.e. wild singularities), generalising the above bundles and their applications.

The motivation for this project is twofold.
First, there is now a complete understanding of the Poisson/symplectic nature of isomonodromic deformations of wild singularitites, which are naturally amenable to quantisation. The quantum theory is much less developed than the classical one, and this naturally motivates us to close the gap using the latter as a guide.
Second, recent work related the genus-zero WZW connection---that is, the KZ connection---to a new version of the Hitchin connection, and this was then used for the quantisation of moduli spaces of parabolic bundles. We want to pursue extensions of this identification; in particular, we will use the new flat connections constructed on the deformation quantisation side as candidates for `wild' Hitchin connections, in the geometric quantisation of wild character varieties: a complete novelty.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2022-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

UNIVERSITE DE MONTPELLIER
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 276 681,60
Dirección
163 RUE AUGUSTE BROUSSONNET
34090 Montpellier
Francia

Ver en el mapa

Región
Occitanie Languedoc-Roussillon Hérault
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Socios (1)

Mi folleto 0 0