Project description
Mastering the movement of tiny swimmers for precision delivery
Biological microswimmers, including bacteria, protozoa, and microalgae, exhibit remarkable self-propulsion mechanisms that induce hydrodynamic interactions between them. These interactions might influence important natural processes like carbon and oxygen cycles, as well as phytoplankton blooms. Despite their potential, controlling these microswimmers for practical applications, such as targeted cargo delivery, remains a challenge. Current limitations arise from their behaviour in complex environments where they interact with various agents and external fields, complicating their predictability. With the support of the Marie Skłodowska-Curie Actions programme, the BIOMICAR project aims to develop a computational approach to simulate microswimmers’ behaviour in confined, complex environments. By integrating experimental feedback with simulations, BIOMICAR seeks to enhance our understanding and manipulation of microswimmers, improving cargo delivery systems in challenging conditions.
Objective
Bacteria, protozoa and microalgae have evolved mechanisms to self-propel. The interactions between different types of Biological Microswimmers (BM) are relevant in natural processes such as the regulation of carbon and oxygen biogeochemical cycles and the toxin releasing by phytoplankton blooms under certain environmental conditions, but also in development of technological applications due to the emergence of a collective behaviour and a spatio-temporal synchronization. BM have been used as transporters, showing promising results at carrying and releasing a cargo in a specified target. However, there is still a lack of sharp control of the collective movement of BM towards a target, which implies a poor delivery of the cargo at the desired place. This flaw comes from the fact that, in real scenarios, BM swim through complex porous media where interact with passive and active agents, and are subjected to external fields, such as light, concentration of chemicals and global background flow, that highly affect their motion and hinders its predictability. Up to date, the concomitant effects of confinement, external fields and interactions with other BM or active agents, have not been taken into account in current simulations or experiments. The proposed action, therefore, aims to develop a new computational approach that enables simulation of suspensions of interacting BM in complex confined environments, at the same time subjected to external fields, providing a platform to gain fundamental knowledge on the control of the collective behaviour of mixtures of BM under conditions compatible with the conceptual design of efficient cargo delivery systems. The simulation platform will be feedbacked and tested with experiments, in which suspensions containing phototactic (C. reinhardtii) and chemotactic (E. coli) BM will be studied with microfluidics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- natural sciences biological sciences microbiology bacteriology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28040 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.