Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Machine learning for diagnosis of bipolar disorder: detection of physiological digital biomarkers

Description du projet

L’apprentissage automatique pour un diagnostic objectif et rapide du trouble bipolaire

Grâce aux progrès de la psychiatrie et de la psychologie, les diagnostics de troubles auparavant mal compris sont désormais plus précis et permettent un meilleur traitement. Cependant, le trouble bipolaire (TB), qui affecte la qualité de vie des patients et touche 3 % de la population, nécessite un diagnostic rapide, objectif et précis (une tâche difficile pour les psychiatres dans un délai court). Soutenu par le programme Actions Marie Skłodowska-Curie, le projet AI-DIAGNOSE entend développer un outil rapide et automatisé qui s’appuie sur l’apprentissage automatique pour détecter le TB et les symptômes psychotiques en utilisant des biomarqueurs audiovisuels chez les patients. L’outil permettra d’identifier les schémas oculaires et vocaux associés aux symptômes du syndrome de Down ou de la psychose, améliorant ainsi la précision et l’efficacité du diagnostic.

Objectif

Bipolar disorder (BD) is a chronic and debilitating mental disorder, that affects 2-3% of the population. It impacts quality of life, cognition, and is a leading cause of suicide and all-cause mortalities. Most patients are taken into clinical care during acute episodes, which puts the burden on psychiatrists to make fast, yet accurate diagnostic decisions. However, unlike most medical conditions, psychiatric diagnoses are subjective. This paired with the complexity of its clinical presentation, BD is the most misdiagnosed and underdiagnosed psychiatric condition. More objective scales used in research lack clinical application, due to time constraints and high burden on the patient. AI-DIAGNOSE wants to disrupt the state of the art of BD diagnosis through a completely novel approach: developing an automatized and fast tool for objective detection of BD and psychotic symptoms based on physiological audiovisual biomarkers and machine learning (ML). The timing of the project is supported through recent evidence, from the host, the applicant, and others, showing that speech and eye movement are promising physiological biomarkers. In a pilot study, I found that ML algorithms based on speech patterns could predict the presence of psychiatric diagnosis, and differentiate patients with and without psychosis. Eyetracking datasets provide insights regarding information processing patterns, and have shown potential as diagnostic biomarkers. Although eye movement and speech patterns are promising biomarkers as they can be acquired fast and without putting high burden on the patient, they have not been combined yet for psychiatric diagnostic purposes. The project will be the first to develop such a multi-modal ML diagnostic tool for BD and psychosis in BD. We will test its accuracy against the research gold standard in the field within a large patient cohort (140 patients, 70 controls). If successful, this will a major step towards precision medicine within BD and psychiatry

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2022-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITAT DE BARCELONA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 181 152,96
Adresse
GRAN VIA DE LES CORTS CATALANES 585
08007 BARCELONA
Espagne

Voir sur la carte

Région
Este Cataluña Barcelona
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Partenaires (1)

Mon livret 0 0