Project description
Cerebral vessel graph models for neurovascular understanding
The Blood Oxygenation Level Dependent (BOLD) signal is a key fMRI technique for measuring brain activity based on Neurovascular Coupling (NC). However, factors such as physiological changes and NC uncoupling complicate signal interpretation. Since there is no method to separate neuronal activity from vascular responses, BOLD analyses often overlook the role of blood vessels. Supported by the Marie Skłodowska-Curie Actions programme, the GRASPING NERVE project aims to develop a graph model of cerebral vessels to assess cerebrovascular connectivity and integrate BOLD signal fluctuations. This non-invasive approach will improve understanding of NC and facilitate studies on pathological NC uncoupling. The project will validate the model using high and ultra-high MRI fields, comparing BOLD with non-BOLD techniques.
Objective
Blood Oxygenation Level Dependent (BOLD) signal is a widespread functional Magnetic Resonance Imaging (fMRI) technique to non-invasively study brain activity, and it relies on the mechanism of Neurovascular Coupling (NC), i.e. changes in cerebral blood flow driven by neuronal activity. However, there are various confounding factors for NC, such as homoeostatic physiological changes, or NC uncoupling driven by certain pathologies. Currently, there is no method to disentangle the information associated with neuronal activity from the vascular response. This is an important issue in both physiological imaging and brain activity investigation, as the two signal sources act as competing confounding factors. Furthermore, although vessels are the main blood distribution system, they are mostly ignored when taking into account BOLD analyses.
In this project, I will first create a graph model of cerebral vessels to assess “cerebrovascular connectivity”. I will then use graph signal processing, a novel signal processing technique based on graphs, to embed BOLD signal fluctuations into the vascular and the more traditional tractography-based graphs to disentangle the propagation of neuronal activity and blood flow in these two pathways. This technique will allow disentangling the components of NC non-invasively, offering new insight on brain activity and neurovascular coupling, and allowing further studies on pathological NC uncoupling, such as pre-surgical imaging for tumour.
I will apply this model at the macro- (whole-brain) and meso- (grey-matter- layers) scale, connecting the properties of NC in functional imaging between them. The application will be validated in high (3 Tesla) and ultra-high (7 Tesla) MRI fields to address its feasibility for both research and clinical application. Finally, BOLD will be compared with non-BOLD functional techniques, such as Arterial Spin Labelling and Vascular Space Occupancy, to shed light into the imaging of NC and brain activity.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
6200 MD Maastricht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.