Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Algebraic Theory of Information Quantities

Project description

Advanced algebraic approaches to nonlinear information theory problems

Information theory, which blends statistics, engineering and computer science, is a key theoretical pillar of data science. Computational problems in this field are highly nonlinear. Funded by the Marie Skłodowska-Curie Actions programme, the ALGETIQ project plans to apply cutting-edge computational nonlinear algebra methods to information theory. The goal is to study the inherent algebraic complexity of information theory problems and provide practical tools for solving them. The focus will be on the practical computation of information quantities using numerical and differential algebraic geometry and identify the algebraic complexity in instances of general interest. Another objective is to uncover fundamental laws and limits of data science imposed by nonlinear inequalities constraining the entropic region, providing universal bounds for many optimisation problems in information theory.

Objective

Information theory is a discipline at the intersection of statistics, engineering and computer science. As the study of information quantities, such as compression or communication capacities, information content or measures of statistical dependency, it is one of the theoretical underpinnings of data science.

Computational problems in information theory are highly non-linear. The goal of this project is to transfer state-of-the-art methods of computational non-linear algebra to information theory, to study the inherent algebraic complexity of information-theoretical problems and to provide tools for solving them in practice. The algebraic point of view has proven to be fruitful in seemingly unrelated areas, as witnessed by a surge of recent work in algebraic statistics, in particular on likelihood geometry. However, maximizing the likelihood function is the same as minimizing relative entropy — a specific information quantity. Hence, this project also aims at generalizing the techniques developed in likelihood geometry.

One focus is on the practical computation of information quantities using numerical and differential algebraic geometry. Such quantities are defined via non-linear optimization problems and we aim to pinpoint the algebraic complexity of these problems in instances of general interest, such as common information measures. The final objective is finding fundamental laws and limits of data science imposed by non-linear inequalities constraining the entropic region. These inequalities provide, by duality, universal bounds for many of the optimization problems studied in information theory.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 210 911,04
Address
HANSINE HANSENS VEG 14
9019 Tromso
Norway

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0