Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Algebraic Theory of Information Quantities

Description du projet

Approches algébriques avancées des problèmes non linéaires de la théorie de l’information

La théorie de l’information, qui combine les statistiques, l’ingénierie et l’informatique, constitue un pilier théorique essentiel de la science des données. Les problèmes de calcul de ce domaine sont hautement non linéaires. Financé par le programme Actions Marie Skłodowska-Curie, le projet ALGETIQ se propose d’appliquer des méthodes informatiques d’algèbre non linéaire de pointe à la théorie de l’information. Son objectif est d’étudier la complexité algébrique inhérente aux problèmes de la théorie de l’information et de fournir des outils pratiques pour les résoudre. Il mettra l’accent sur le calcul pratique des quantités d’information à l’aide de la géométrie algébrique numérique et différentielle et sur l’identification de la complexité algébrique dans des exemples d’intérêt général. Un autre de ses objectifs est de découvrir les lois fondamentales et les limites de la science des données imposées par les inégalités non linéaires qui contraignent la région entropique, fournissant des limites universelles pour de nombreux problèmes d’optimisation de la théorie de l’information.

Objectif

Information theory is a discipline at the intersection of statistics, engineering and computer science. As the study of information quantities, such as compression or communication capacities, information content or measures of statistical dependency, it is one of the theoretical underpinnings of data science.

Computational problems in information theory are highly non-linear. The goal of this project is to transfer state-of-the-art methods of computational non-linear algebra to information theory, to study the inherent algebraic complexity of information-theoretical problems and to provide tools for solving them in practice. The algebraic point of view has proven to be fruitful in seemingly unrelated areas, as witnessed by a surge of recent work in algebraic statistics, in particular on likelihood geometry. However, maximizing the likelihood function is the same as minimizing relative entropy — a specific information quantity. Hence, this project also aims at generalizing the techniques developed in likelihood geometry.

One focus is on the practical computation of information quantities using numerical and differential algebraic geometry. Such quantities are defined via non-linear optimization problems and we aim to pinpoint the algebraic complexity of these problems in instances of general interest, such as common information measures. The final objective is finding fundamental laws and limits of data science imposed by non-linear inequalities constraining the entropic region. These inequalities provide, by duality, universal bounds for many of the optimization problems studied in information theory.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2022-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 210 911,04
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Partenaires (1)

Mon livret 0 0