Opis projektu
Zaawansowane podejście algebraiczne do nieliniowych problemów teorii informacji
Teoria informacji, która łączy statystykę, inżynierię i informatykę, jest głównym filarem teoretycznym nauki o danych. Niestety, problemy obliczeniowe w tej dziedzinie są wysoce nieliniowe. W związku z tym zespół finansowanego w ramach działań „Maria Skłodowska-Curie” projektu ALGETIQ zastosuje nowoczesne metody obliczeniowej algebry nieliniowej do teorii informacji. Celem projektu jest zbadanie algebraicznej złożoności problemów teorii informacji i dostarczenie praktycznych narzędzi do ich rozwiązywania. Nacisk zostanie położony na praktyczne obliczenia wielkości informacji przy użyciu numerycznej i różniczkowej geometrii algebraicznej oraz określenie złożoności algebraicznej w przypadkach ogólnego zainteresowania. Ponadto uczeni postarają się ustalić podstawowe prawa i ograniczenia nauki o danych narzucone przez nieliniowe nierówności ograniczające obszar entropii, opracowując uniwersalne ograniczenia dla wielu problemów optymalizacyjnych w teorii informacji.
Cel
Information theory is a discipline at the intersection of statistics, engineering and computer science. As the study of information quantities, such as compression or communication capacities, information content or measures of statistical dependency, it is one of the theoretical underpinnings of data science.
Computational problems in information theory are highly non-linear. The goal of this project is to transfer state-of-the-art methods of computational non-linear algebra to information theory, to study the inherent algebraic complexity of information-theoretical problems and to provide tools for solving them in practice. The algebraic point of view has proven to be fruitful in seemingly unrelated areas, as witnessed by a surge of recent work in algebraic statistics, in particular on likelihood geometry. However, maximizing the likelihood function is the same as minimizing relative entropy — a specific information quantity. Hence, this project also aims at generalizing the techniques developed in likelihood geometry.
One focus is on the practical computation of information quantities using numerical and differential algebraic geometry. Such quantities are defined via non-linear optimization problems and we aim to pinpoint the algebraic complexity of these problems in instances of general interest, such as common information measures. The final objective is finding fundamental laws and limits of data science imposed by non-linear inequalities constraining the entropic region. These inequalities provide, by duality, universal bounds for many of the optimization problems studied in information theory.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta algebra
- nauki przyrodnicze matematyka matematyka czysta geometria
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2022-PF-01
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
9019 Tromso
Norwegia
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.