Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Comparison and rigidity for scalar curvature

Objectif

Questions involving the scalar curvature bridge many areas inside mathematics including geometric analysis, differential geometry and algebraic topology, and they are naturally related to the mathematical description of general relativity.

There are two main flavours of methods to probe the geometry of scalar curvature: One goes back to Lichnerowicz and uses various versions of index theory for the Dirac equation on spinors. The other is broadly based on minimal hypersurfaces and was initiated by Schoen and Yau. On both types of methods there has been tremendous progress over recent years sparked by novel quantitative comparison and rigidity questions due to Gromov and by on-going attempts to arrive at a deeper geometric understanding of lower scalar curvature bounds.

In this proposal we view established landmark results, such as the non-existence of positive scalar curvature on the torus, together with the more recent quantitative problems from a conceptually unified standpoint, where a comparison principle for scalar and mean curvature along maps between Riemannian manifolds plays the central role.

Guided by this point of view, we aim to develop fundamentally new tools to study scalar curvature that bridge long-standing gaps in between the existing techniques. This includes a far-reaching generalization of the Dirac operator approach expanding upon techniques pioneered by the PI, and novel applications of Bochner-type methods. We will also study analogous comparison problems on domains with singular boundary motivated by a first synthetic characterization of lower scalar curvature bounds in terms of polyhedral domains, and by the general quest for extending the study of scalar curvature beyond smooth manifolds. At the same time, we will treat subtle almost rigidity questions corresponding to the rigidity aspect of our comparison principle.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2023-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITAET POTSDAM
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 329 469,84
Adresse
AM NEUEN PALAIS 10
14469 Potsdam
Allemagne

Voir sur la carte

Région
Brandenburg Brandenburg Potsdam
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 329 469,84

Bénéficiaires (2)

Mon livret 0 0