Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Foundations of Generalization

Objective

Arguably, the most crucial objective of Learning Theory is to understand the basic notion of generalization: How can a learning agent infer from a finite amount of data to the whole population? Today's learning algorithms are poorly understood from that perspective. In particular, best practices, such as using highly overparameterized models to fit relatively few data, seem to be in almost contradiction to common wisdom, and classical models of learning seem to be incapable of explaining the impressive success of such algorithms. The objective of this proposal is to understand generalization in overparameterized models and understand the role of algorithms in learning. Toward this task, I will consider two mathematical models of learning that shed light on this fundamental problem.

The first model is the well-studied, yet only seemingly well-understood, model of Stochastic Convex optimization. My investigations, so far, provided a new picture that is much more complex than was previously known or assumed, regarding fundamental notions such as regularization, inductive bias as well as stability. These works show that even in this, simplistic setup of learning, understanding such fundamental principles may be a highly ambitious task. On the other hand, given the simplicity of the model, it seems that such an understanding is a prerequisite to any future model that will explain modern Machine Learning algorithms.

The second model considers a modern task of synthetic data generation. Synthetic data generation serves as an ideal model to further study the tension between concepts such as generalization and memorization. Here we with a challenge to model the question of generalization, and answer fundamental questions such as: when is synthetic data original and when is it a copy of the empirical data?

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-STG

See all projects funded under this call

Host institution

TEL AVIV UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 419 375,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 419 375,00

Beneficiaries (1)

My booklet 0 0