Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Foundations of Generalization

Objetivo

Arguably, the most crucial objective of Learning Theory is to understand the basic notion of generalization: How can a learning agent infer from a finite amount of data to the whole population? Today's learning algorithms are poorly understood from that perspective. In particular, best practices, such as using highly overparameterized models to fit relatively few data, seem to be in almost contradiction to common wisdom, and classical models of learning seem to be incapable of explaining the impressive success of such algorithms. The objective of this proposal is to understand generalization in overparameterized models and understand the role of algorithms in learning. Toward this task, I will consider two mathematical models of learning that shed light on this fundamental problem.

The first model is the well-studied, yet only seemingly well-understood, model of Stochastic Convex optimization. My investigations, so far, provided a new picture that is much more complex than was previously known or assumed, regarding fundamental notions such as regularization, inductive bias as well as stability. These works show that even in this, simplistic setup of learning, understanding such fundamental principles may be a highly ambitious task. On the other hand, given the simplicity of the model, it seems that such an understanding is a prerequisite to any future model that will explain modern Machine Learning algorithms.

The second model considers a modern task of synthetic data generation. Synthetic data generation serves as an ideal model to further study the tension between concepts such as generalization and memorization. Here we with a challenge to model the question of generalization, and answer fundamental questions such as: when is synthetic data original and when is it a copy of the empirical data?

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2023-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

TEL AVIV UNIVERSITY
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 419 375,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 419 375,00

Beneficiarios (1)

Mi folleto 0 0