Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Evolution of Biomolecular Condensates

Project description

Understanding biomolecular condensates’ evolution

Cells organise billions of proteins into two compartments: membrane-bound and membrane-less, the latter known as biomolecular condensates. Despite advances, we still do not fully understand how proteins are targeted to these condensates or their evolutionary origins. The ERC-funded CONDEVO project will explore the idea that protein localisation in condensates is encoded in their sequences and that these condensates are maintained through evolutionary selection. The project will map condensate proteomes across the Tree of Life, reconstruct their evolutionary history, and identify conserved sequence features that drive localisation. It will develop tools to predict specific condensate proteomes, conduct experiments on protein partitioning, classify condensate families, and compare their evolution with that of organisms and organelles.

Objective

Cells organize billions of protein molecules into membrane-bound and membrane-less compartments, called biomolecular condensates. Previous research on condensates focused on identifying their components, material properties, and function in homeostasis and disease. In contrast to our relatively precise understanding of membrane-bound compartments, we lack a comprehensive picture of the mechanisms that target proteins into condensates and how condensates emerged during evolution. I hypothesize that localization into condensate is encoded in protein sequences, and that functional condensates are under selection pressure and therefore conserved. I propose a comprehensive research program including both theoretical and experimental approaches to reveal how and when protein condensates emerged during evolution.
I propose to:
1. Map proteomes of condensates across the tree of life,
2. Reconstruct the history of condensates,
3. Follow trajectories of condensate evolution.
Specifically, I will:
1. Investigate what conserved sequence features drive localization to condensates by developing computational tools to predict the proteome of specific condensates across the tree of life; and by testing partitioning of proteins into condensates experimentally.
2. Reconstruct the evolutionary history of the protein components of conserved condensates, and thereby trace their evolutionary origin. Analogous to protein families, we will define condensate families based on shared properties of their proteins and function by developing similarity metrics. We will reconstruct the phylogeny of condensate families and compare to organism and organelle evolution.
3. Perform directed evolution of ancestral non-condensate-forming proteins towards condensate partitioning and follow their mutational trajectories.
Building on our already developed tools and the new algorithms proposed here combined with experiments, we will be able to map the molecular history of condensates on the Tree of Life.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-STG

See all projects funded under this call

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 494 150,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 494 150,00

Beneficiaries (1)

My booklet 0 0