Project description
Describing photoinhibition in photosynthetic microbes
Photosynthetic microbes are crucial for carbon fixation but face challenges from sunlight, which can damage their photosynthetic apparatus through photoinhibition. Many aspects of photoinhibition remain unresolved, including the specific site and molecular nature of the damage within the photosystem II (PSII) complex, the different types of damage based on environmental conditions, and the role of haem b559 near the PSII reaction centre. The ERC-funded PHOTONICS project aims to describe photoinhibition and photoprotection strategies in photosynthetic microbes using innovative in vivo methods and state-of-the-art structural biology. The project will bridge different complexity scales to resolve critical gaps in our understanding of PSII function and damage, providing a methodological blueprint for assessing photoinhibition in situ and modelling photosynthetic productivity under fluctuating conditions.
Objective
Photosynthetic microbes contribute over 50% of carbon fixation on Earth. Inhabiting extremely diverse environments, they always have to cope with a friend that is simultaneously their enemy: sunlight. Photon energy is necessary for photosynthesis, but it continuously damages the photosynthetic apparatus, primarily the first enzyme in oxygenic photosynthesis Photosystem II (PSII) in the process of photoinhibition. Upon photodamage, PSII becomes irreversibly inactivated, unable to do electron transfer, and requires costly repair involving protein translation. Photoinhibition represents a major limiting factor to terrestrial and aquatic photosynthesis. Despite decades of research on PSII and photoinhibition, many key aspects of photoinhibition remain unresolved, among them: -the site within the PSII complex where the photoinhibitory damage takes place, as well as its molecular nature -partitioning of the known different types of damage, dependent on the environment and conditions -the role of the mysterious haem b559, conserved in phototrophs close to PSII reaction centre and transferring electrons, long speculated to play a role in photoprotection but with no convincing role assigned to date In PHOTONICS, I aim to focus on these issues to provide a thorough description of photoinhibition and photoprotection strategies in photosynthetic microbes. I will use a combination of novel in vivo methods, taking advantage of the most recent developments in time-resolved fluorescence- and absorption spectroscopies. These will be combined with genetics and state-of-the-art structural biology. It is the integrative nature of PHOTONICS, bridging different scales of complexity in a hypothesis-driven manner, that will allow to finally resolve the critical missing pieces of PSII function and damage. Finally, it will provide a methodological blueprint for assessment of photoinhibition in situ, and aid modelling of photosynthetic productivity under fluctuating conditions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences economics and business economics production economics productivity
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
- natural sciences biological sciences botany
- natural sciences physical sciences theoretical physics particle physics photons
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.