Description du projet
Repousser les limites de l’analyse approximative pour résoudre les théories quantiques de jauge
Le projet SQGT, financé par le CER, cherche à développer des solutions mathématiques pour plusieurs problèmes ouverts des théories quantiques de jauge (QGT pour «quantum gauge theories»), y compris le problème du prix du millénaire portant sur «l’existence et l’écart de masse» de Yang-Mills. Il entend élucider les constructions en volume fini de QGT 2D et 3D non résolubles avec exactitude, ce qui pourrait également mener au cas physique des constructions 4D. Pour ce faire, il concevra de nouvelles méthodes dans le domaine de l’analyse approximative, notamment les équations différentielles partielles stochastiques (EDPS) singulières, qui ont fait l’objet de progrès révolutionnaires au cours des dernières années. Cette nouvelle approche vise à étendre les limites de l’analyse approximative, principalement en étudiant les approximations discrètes des EDPS, en présentant de nouvelles théories pour les solutions géométriques et en couplant les EDPS avec la théorie des matrices aléatoires.
Objectif
This proposal aims to solve central open problems in the mathematical foundation of quantum gauge theories (QGTs), an important challenge comprising the Yang-Mills (YM) Millennium Prize Problem. A key outcome of the proposal will be the first constructions in finite volume of 2- and 3-dimensional non-exactly solvable QGTs, with a view towards the physical case of 4 dimensions.
The principal tools that will be developed and used to address these problems are in the field of rough analysis, in particular singular stochastic partial differential equations (SPDEs). Singular SPDEs appear widely in the study of dynamics with randomness and have seen revolutionary progress in the past decade. By developing new rough analytic methods applicable to QGTs, the proposal will push the frontiers of rough analysis, in particular studying discrete approximations of SPDEs, introducing novel geometric solution theories, and linking SPDEs with random matrix theory.
My research has shown that the stochastic quantisation equations of YM (SYM) can be renormalised in a geometrically faithful way,
which has already revealed new properties of the exactly solvable 2D YM measure. This is strong evidence that rough analytic techniques can bring new light to the study of QGTs and render their construction in 2D and 3D finally within reach.
The proposal is split into the following three long-term projects.
1. Two-dimensional theories: solve and identify the invariant measure of SYM for non-trivial principal bundles; prove large N convergence of SYM; construct the non-Abelian YM-Higgs measure in finite volume.
2. Three-dimensional theories: give the first construction of the 3-dimensional YM measure in finite volume; prove a discrete version of the BPHZ renormalisation theorem in regularity structures.
3. Axiomatic quantum gauge theory: formulate and prove the Osterwalder-Schrader reconstruction theorem applicable to QGTs; prove Uhlenbeck’s regularity theorem for distributions.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Ce projet n'a pas encore été classé par EuroSciVoc.
Proposez les domaines scientifiques qui vous semblent les plus pertinents et aidez-nous à améliorer notre service de classification.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-ERC - HORIZON ERC Grants
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2023-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
34136 Trieste
Italie
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.