Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Accelerated Additive Manufacturing: Digital Discovery of a New Process Generation

Description du projet

Améliorer l’efficacité de la fabrication additive pour des taux de production élevés

La fabrication additive (FA) est une solution cruciale qui pourrait s’avérer extrêmement utile pour atteindre les objectifs environnementaux et optimiser la logistique dans de nombreux secteurs. La fusion laser sur lit de poudre (LPBF pour «laser powder bed fusion») est une avancée prometteuse pour la FA, qui pourrait considérablement améliorer la conception, le développement et la fourniture des produits. Malheureusement, le manque de recherche signifie que la technologie est inefficace pour les taux de production élevés, ce qui limite son utilisation. Le projet ExcelAM, financé par le CER, entend remédier à cette limitation en développant des régimes de traitement innovants à haut débit pour la LPBF. Pour ce faire, il mettra au point de nouvelles méthodologies de modélisation informatique essentielles à l’élaboration de ces nouveaux régimes de traitement. Grâce à ces efforts, ExcelAM espère libérer tout le potentiel de la LPBF dans la fabrication additive.

Objectif

Additive Manufacturing (AM) by Laser Powder Bed Fusion (LPBF) has the potential to revolutionize future product development, design and supply chains. Since the underlying multi-scale physics are not well understood, its potential can presently not be exploited. Sub-optimal process conditions lead to severe defects on different scales, rendering parts unsuitable for use. Critically, known regimes of stable processing go along with very low built rates, i.e. very high costs compared to other processes. This limits LPBF to selected high value applications such as medical devices but prohibits applications in mass production where it otherwise could allow for entirely new technologies.
ExcelAM aims at the digital discovery of novel high-throughput process regimes in LPBF, to increase build rates by at least one order of magnitude. Computational modeling would be perfectly suited for this purpose since it allows to observe physics that are not accessible to measurement and to study novel process technologies that are not feasible with existing hardware. Unfortunately, existing computational tools are by far not powerful enough, given the complexity of LPBF. Therefore, ExcelAM will develop novel game-changing methodologies, grouped into two main classes: First, novel high-fidelity multi-physics models will be developed, capturing the complex multi-scale nature of LPBF. These are combined with cutting-edge high performance computing schemes, allowing for predictions on unprecedented time spans and system sizes. Second, novel data-based learning approaches will be developed to enrich the physical models with process data, while exploiting the manifold of existing data as effective as possible.
Based on these cutting-edge tools, ExcelAM will push the limits of LPBF. Moreover, by making them publicly available, ExcelAM will help scientists and practitioners in the field of production engineering and beyond to face the technological challenges of the 21st century.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2023-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

TECHNISCHE UNIVERSITAET MUENCHEN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 484 926,00
Adresse
Arcisstrasse 21
80333 Muenchen
Allemagne

Voir sur la carte

Région
Bayern Oberbayern München, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 484 926,00

Bénéficiaires (1)

Mon livret 0 0