European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Quantum Metamaterials with integrated atomic-like arrays for quantum information processing

Descripción del proyecto

Interacciones luz-materia pioneras en metamateriales cuánticos

El entrelazamiento cuántico se produce cuando el estado cuántico de dos o más partículas no puede describirse independientemente de la(s) otra(s) partícula(s), incluso a distancia. Ello permite a los ordenadores cuánticos realizar tareas inaccesibles para los ordenadores clásicos. Requiere fuertes interacciones entre cúbits localizados (átomos) y cúbits voladores (fotones), pero los paradigmas actuales están limitados por la fuerza de la interacción y los subsiguientes mecanismos de pérdida. El equipo del proyecto QuantMeta, financiado por el Consejo Europeo de Investigación, pretende superar este obstáculo ante las operaciones cuánticas eficientes creando metamateriales cuánticos a partir de matrices de emisores cuánticos como interfaces novedosas para generar entrelazamiento átomo-fotón. El control coherente de los grados de libertad internos de los emisores y el acceso, por primera vez, a estados de larga vida conducirán a estados entrelazados de muchos cuerpos para la computación cuántica unidireccional.

Objetivo

The key to realizing quantum systems that can implement quantum information processing is entanglement generation between many qubits. For distributing entanglement strong interactions between localized qubits (atoms) and flying qubits (photons) have to be ensured. The quantum-science community is currently searching for systems that offer enhanced light--matter interaction, as the efficiency of quantum operations in current state-of-the-art systems is limited by the interaction strength and loss mechanisms, which impede the generation of useful many-body entangled states.

We plan to address this challenge by creating quantum metamaterials from quantum-emitter arrays as novel interfaces for generating atom-photon entanglement. Whereas most of the scientific effort focuses on coupling localized qubits to pre-designed structures to enhance interaction (i.e. cavities), we plan to take a completely different approach: building bottom-up quantum optical metamaterials out of quantum particles. We will achieve this by embedding silicon-vacancy-center arrays integrated in a diamond chip, which have shown to be top candidates for entanglement distribution.

We will harness the enhanced collective response of the emitters to light and achieve a quantum response by coherently controlling the emitters' internal degrees of freedom. We will also access never-before-observed long-lived states, which are ideal for quantum memory. Our vision is to implement a scalable quantum light source with many degrees of freedom that generates large-scale atom-photon entanglement. By employing quantum information protocols we developed, our system can generate many-body entangled states applicable to one-way quantum computation. Our system unites major advantages for scaling-up entanglement: 1. High-fidelity quantum control over photonic states. 2. Potential operation-time speed-up by parallelizing photon control. 3. Quantum memory with long-lived states. 4. Integration into nanophotonics

Régimen de financiación

HORIZON-ERC - HORIZON ERC Grants

Institución de acogida

THE HEBREW UNIVERSITY OF JERUSALEM
Aportación neta de la UEn
€ 2 374 938,75
Dirección
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 Jerusalem
Israel

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 2 374 938,75

Beneficiarios (1)