CORDIS - Forschungsergebnisse der EU
CORDIS

Quantum Metamaterials with integrated atomic-like arrays for quantum information processing

Projektbeschreibung

Licht-Materie Wechselwirkungen in Quantenmetamaterialien

Quantenverschränkung liegt vor, wenn der Quantenzustand von zwei oder mehr Teilchen selbst auf Entfernung nicht unabhängig von den anderen Teilchen beschrieben werden kann. Durch dieses Phänomen können Quantencomputer Aufgaben ausführen, die für klassische Computer unmöglich sind. Dafür sind starke Wechselwirkungen zwischen lokalisierten QuBits (Atomen) und fliegenden QuBits (Photonen) erforderlich, doch aktuell sind Paradigmen durch die Stärke der Wechselwirkung und somit Verlustmechanismen begrenzt. Finanziert über den Europäischen Forschungsrat wird diese Hürde zu effizienten Quantenoperationen im Projekt QuantMeta angegangen, indem Quantenmetamaterialien aus Quantenemitter-Arrays geschaffen werden. Sie sollen als Schnittstelle zur Schaffung von Atom-Photon-Verschränkungen dienen. Durch die durchgängige Kontrolle über den internen Freiheitsgrad der Emitter und den erstmaligen Zugang zu dauerhaften Zuständen sind Mehrkörperverschränkungen für einseitige Quantenberechnungen möglich.

Ziel

The key to realizing quantum systems that can implement quantum information processing is entanglement generation between many qubits. For distributing entanglement strong interactions between localized qubits (atoms) and flying qubits (photons) have to be ensured. The quantum-science community is currently searching for systems that offer enhanced light--matter interaction, as the efficiency of quantum operations in current state-of-the-art systems is limited by the interaction strength and loss mechanisms, which impede the generation of useful many-body entangled states.

We plan to address this challenge by creating quantum metamaterials from quantum-emitter arrays as novel interfaces for generating atom-photon entanglement. Whereas most of the scientific effort focuses on coupling localized qubits to pre-designed structures to enhance interaction (i.e. cavities), we plan to take a completely different approach: building bottom-up quantum optical metamaterials out of quantum particles. We will achieve this by embedding silicon-vacancy-center arrays integrated in a diamond chip, which have shown to be top candidates for entanglement distribution.

We will harness the enhanced collective response of the emitters to light and achieve a quantum response by coherently controlling the emitters' internal degrees of freedom. We will also access never-before-observed long-lived states, which are ideal for quantum memory. Our vision is to implement a scalable quantum light source with many degrees of freedom that generates large-scale atom-photon entanglement. By employing quantum information protocols we developed, our system can generate many-body entangled states applicable to one-way quantum computation. Our system unites major advantages for scaling-up entanglement: 1. High-fidelity quantum control over photonic states. 2. Potential operation-time speed-up by parallelizing photon control. 3. Quantum memory with long-lived states. 4. Integration into nanophotonics

Schlüsselbegriffe

Programm/Programme

Gastgebende Einrichtung

THE HEBREW UNIVERSITY OF JERUSALEM
Netto-EU-Beitrag
€ 2 374 938,75
Adresse
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 Jerusalem
Israel

Auf der Karte ansehen

Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 2 374 938,75

Begünstigte (1)