European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Quantum Metamaterials with integrated atomic-like arrays for quantum information processing

Descrizione del progetto

Pionieristiche interazioni tra luce e materia nei metamateriali quantistici

L’entanglement quantistico si verifica quando lo stato quantistico di due o più particelle non può essere descritto indipendentemente da altre anche distanti da loro, il che consente ai computer basati sulla potenza quantistica di svolgere compiti inaccessibili ai computer tradizionali. Questo entanglement richiede forti interazioni tra qubit localizzati (atomi) e qubit volanti (fotoni); tuttavia, i paradigmi attualmente a disposizione sono limitati dalla forza dell’interazione e dai successivi meccanismi di perdita. Il progetto QuantMeta, finanziato dal CER, si propone di affrontare questa barriera all’efficienza delle operazioni quantistiche creando metamateriali quantistici da array di emettitori quantistici come nuove interfacce per generare l’entanglement tra atomi e fotoni. Il controllo coerente dei gradi di libertà interni degli emettitori e il primo accesso di sempre a stati a lunga durata consentiranno di originare stati entangled a molti corpi per la computazione quantistica unidirezionale.

Obiettivo

The key to realizing quantum systems that can implement quantum information processing is entanglement generation between many qubits. For distributing entanglement strong interactions between localized qubits (atoms) and flying qubits (photons) have to be ensured. The quantum-science community is currently searching for systems that offer enhanced light--matter interaction, as the efficiency of quantum operations in current state-of-the-art systems is limited by the interaction strength and loss mechanisms, which impede the generation of useful many-body entangled states.

We plan to address this challenge by creating quantum metamaterials from quantum-emitter arrays as novel interfaces for generating atom-photon entanglement. Whereas most of the scientific effort focuses on coupling localized qubits to pre-designed structures to enhance interaction (i.e. cavities), we plan to take a completely different approach: building bottom-up quantum optical metamaterials out of quantum particles. We will achieve this by embedding silicon-vacancy-center arrays integrated in a diamond chip, which have shown to be top candidates for entanglement distribution.

We will harness the enhanced collective response of the emitters to light and achieve a quantum response by coherently controlling the emitters' internal degrees of freedom. We will also access never-before-observed long-lived states, which are ideal for quantum memory. Our vision is to implement a scalable quantum light source with many degrees of freedom that generates large-scale atom-photon entanglement. By employing quantum information protocols we developed, our system can generate many-body entangled states applicable to one-way quantum computation. Our system unites major advantages for scaling-up entanglement: 1. High-fidelity quantum control over photonic states. 2. Potential operation-time speed-up by parallelizing photon control. 3. Quantum memory with long-lived states. 4. Integration into nanophotonics

Meccanismo di finanziamento

HORIZON-ERC - HORIZON ERC Grants

Istituzione ospitante

THE HEBREW UNIVERSITY OF JERUSALEM
Contribution nette de l'UE
€ 2 374 938,75
Indirizzo
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 Jerusalem
Israele

Mostra sulla mappa

Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 2 374 938,75

Beneficiari (1)