Project description
Safer, smarter ship inspections with drones
The world’s fleet of over 50 000 large vessels requires frequent inspections to detect corrosion and structural defects. Currently, human surveyors must enter hazardous, confined spaces such as ballast tanks and cargo holds (often without GNSS navigation), where accidents claim one life every week. These spaces are riddled with narrow passages, making inspections dangerous. Traditional methods are also costly, requiring lengthy downtime. The EU-funded AUTOASSESS project will deploy unmanned aerial systems. Integrating AI, multi-modal SLAM, collision-tolerant drones, and miniaturised sensors, AUTOASSESS enables autonomous, high-resolution defect detection and mapping. This approach enhances safety, reduces inspection time from 15 days to just one, and cuts industry costs while lowering CO2 emissions by 2.4 million tonnes.
Objective
The >50k large vessels across the world must be regularly monitored for corrosion and defects by human surveyors, including dangerous and dirty confined GNSS-denied areas such as ballast water tanks and cargo holds. One person is killed every week from accidents in these enclosed spaces, which despite having large surface areas, consist of many smaller, confined compartments with narrow passages (40cmx60cm). However, a radical new approach is possible using unmanned aerial systems (UAS or drones), by combining the latest developments in (1) collision-tolerant UAS, (2) multi-modal SLAM, (3) path planning, (4) autonomous drone racing, (5) aerial manipulation, (6) miniaturized NDT sensors, and (7) ML-based defect identification. Only through a complete integration of these technologies is it possible to address the challenges of deploying aerial robots in these challenging conditions. Equipped with automated AI-based scanning, mapping, navigation and contact-based NDT, this has the potential to completely remove the need for human inspection. Using a digital twin approach brings “superhuman” results: comprehensive semantic-aware detailed 3D mapping (1 cm resolution) of large structures (>300 m), high resolution visual and NDT analysis (100um) and improved traceability with automatically generated trend analysis. The ML for system mapping and NDT is trained with sociotechnical inputs from experienced human inspectors.
Currently, a typical inspection costs >1M€ and requires 15 days (8 days inspection and 7 days travel to low cost Far Eastern docks). A UAS-based inspection will take 1 day, with 1-2 days travel to an EU port at a cost of 200k€, saving the industry >9B€ p.a. with 2.4MT of CO2 reduction. This consortium includes many of the world leaders in the field of UAS-based inspection teamed with vessel owners and inspectors, enabling an end-to-end survey solution which would save 50 lives/yr, and provide safer, more reliable, and accurate inspection data.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.5 - Artificial Intelligence and Robotics
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-IA - HORIZON Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-DIGITAL-EMERGING-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 Kongens Lyngby
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.