Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Overcoming the sign problem in lattice gauge theories using tensor networks

Descripción del proyecto

Resolución del problema de los signos en las teorías gauge en el retículo

El problema de los signos en las teorías de gauge en el retículo (LGT, por sus siglas en inglés) sigue siendo un reto importante en la física computacional, especialmente en dimensiones altas. Los métodos tradicionales de Monte Carlo tienen dificultades con este problema, lo que limita el estudio de sistemas fuertemente correlacionados en entornos realistas. Mientras que los estados de pares entrelazados proyectados (PEPS, por sus siglas en inglés) han demostrado ser prometedores en sistemas de dimensiones bajas, su aplicación en dimensiones altas sigue estando poco explorada. En este contexto, el equipo del proyecto OverSign, financiado por el CEI, pretende aprovechar una analogía fundamental entre las PEPS y las teorías gauge para superar estas limitaciones. Mediante el desarrollo de métodos nuevos, en el proyecto se intenta proporcionar un marco eficiente para el estudio de modelos no perturbativos, en particular en cromodinámica cuántica, avanzando tanto en métodos teóricos como computacionales.

Objetivo

Tensor networks, and particularly projected entangled pair states (PEPS), are special quantum many-body states that describe strongly-correlated systems well due to their entanglement structure. They have been successfully applied in various scenarios and recently to lattice gauge theories (LGTs) where they outperformed conventional Monte-Carlo calculations and overcame the sign problem in some examples, but mostly in single-space dimensions due to limitations of tensor network methods. A fundamental analogy between PEPS and gauge theories suggests that PEPS are suitable for studying LGTs and that gauge symmetry, often seen as complicating the numerics, can help in overcoming the sign problem and perform efficient tensor network computations in higher dimensions. The overarching goal of this project is to use this analogy in analytical and numerical ways, aiming to (1) analytically devise a comprehensive new formalism for LGT PEPS and the physics they describe by allowing one to construct the optimal PEPS to be used as variational ansatz states when combined with numerical techniques; (2) devise numerical methods for studying LGTs with such PEPS thanks to the analogy, based on sign problem-free variational Monte-Carlo; (3) apply these methods numerically to challenging, non-perturbative models, culminating in SU(3) in 3+1-D, with finite fermionic density, towards quantum chromodynamics. This is expected to overcome the sign problem of such models, thus closing an important, challenging and long-standing gap in the field of non-perturbative physics in general, and gauge theories in particular. The developed methods can be generalized for studying real-time dynamics of quantum field theories, models of quantum gravity, thermal quantum field theories and many other puzzling questions. They will also advance the parallel contemporary approach to LGT - quantum simulations and computations - as some open problems are shared by both approaches.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2023-COG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

THE HEBREW UNIVERSITY OF JERUSALEM
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 795 300,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 795 300,00

Beneficiarios (1)

Mi folleto 0 0