Opis projektu
Rozwiązywanie problemu znaku w teoriach cechowania kratowego
Problem znaku w teoriach cechowania kratowego(LGT) pozostaje głównym wyzwaniem w fizyce obliczeniowej, szczególnie w wyższych wymiarach. Tradycyjne metody Monte Carlo nie radzą sobie z tą kwestią, ograniczając badanie silnie skorelowanych systemów w realistycznych warunkach. Podczas gdy projektowane stany splątane (PEPS) okazują się obiecujące w układach niskowymiarowych, ich zastosowanie w wyższych wymiarach pozostaje niewystarczająco zbadane. W tym kontekście, finansowany przez ERBN projekt OverSign zakłada wykorzystanie fundamentalnej analogii między PEPS a teoriami cechowania w celu przezwyciężenia tych ograniczeń. Poprzez opracowanie nowych metod projekt ma na celu zapewnienie skutecznych ram do badania modeli nieperturbacyjnych, w szczególności w chromodynamice kwantowej, rozwijając zarówno podejścia teoretyczne, jak i obliczeniowe.
Cel
Tensor networks, and particularly projected entangled pair states (PEPS), are special quantum many-body states that describe strongly-correlated systems well due to their entanglement structure. They have been successfully applied in various scenarios and recently to lattice gauge theories (LGTs) where they outperformed conventional Monte-Carlo calculations and overcame the sign problem in some examples, but mostly in single-space dimensions due to limitations of tensor network methods. A fundamental analogy between PEPS and gauge theories suggests that PEPS are suitable for studying LGTs and that gauge symmetry, often seen as complicating the numerics, can help in overcoming the sign problem and perform efficient tensor network computations in higher dimensions. The overarching goal of this project is to use this analogy in analytical and numerical ways, aiming to (1) analytically devise a comprehensive new formalism for LGT PEPS and the physics they describe by allowing one to construct the optimal PEPS to be used as variational ansatz states when combined with numerical techniques; (2) devise numerical methods for studying LGTs with such PEPS thanks to the analogy, based on sign problem-free variational Monte-Carlo; (3) apply these methods numerically to challenging, non-perturbative models, culminating in SU(3) in 3+1-D, with finite fermionic density, towards quantum chromodynamics. This is expected to overcome the sign problem of such models, thus closing an important, challenging and long-standing gap in the field of non-perturbative physics in general, and gauge theories in particular. The developed methods can be generalized for studying real-time dynamics of quantum field theories, models of quantum gravity, thermal quantum field theories and many other puzzling questions. They will also advance the parallel contemporary approach to LGT - quantum simulations and computations - as some open problems are shared by both approaches.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.1 - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-ERC - HORIZON ERC Grants
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2023-COG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
91904 JERUSALEM
Izrael
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.