Projektbeschreibung
Das Vorzeichenproblem in Gittereichtheorien lösen
Das Vorzeichenproblem in Gittereichtheorien bleibt eine große Herausforderung in der Computerphysik, insbesondere in höheren Dimensionen. Traditionelle Monte-Carlo-Methoden kämpfen mit diesem Problem und schränken die Untersuchung stark korrelierter Systeme in realistischen Umgebungen ein. Während sich projizierte verschränkte Paarzustände in niederdimensionalen Systemen als vielversprechend erwiesen haben, ist ihre Anwendung in höheren Dimensionen noch wenig erforscht. Das Ziel des ERC-finanzierten Projekts OverSign lautet daher, eine grundlegende Analogie zwischen projizierten verschränkten Paarzuständen und Eichtheorien zu nutzen, um diese Einschränkungen zu überwinden. Durch die Entwicklung neuer Methoden soll das Projektteam einen effizienten Rahmen für die Untersuchung nicht-perturbativer Modelle, insbesondere in der Quantenchromodynamik, schaffen und sowohl theoretische als auch rechnerische Ansätze voranbringen.
Ziel
Tensor networks, and particularly projected entangled pair states (PEPS), are special quantum many-body states that describe strongly-correlated systems well due to their entanglement structure. They have been successfully applied in various scenarios and recently to lattice gauge theories (LGTs) where they outperformed conventional Monte-Carlo calculations and overcame the sign problem in some examples, but mostly in single-space dimensions due to limitations of tensor network methods. A fundamental analogy between PEPS and gauge theories suggests that PEPS are suitable for studying LGTs and that gauge symmetry, often seen as complicating the numerics, can help in overcoming the sign problem and perform efficient tensor network computations in higher dimensions. The overarching goal of this project is to use this analogy in analytical and numerical ways, aiming to (1) analytically devise a comprehensive new formalism for LGT PEPS and the physics they describe by allowing one to construct the optimal PEPS to be used as variational ansatz states when combined with numerical techniques; (2) devise numerical methods for studying LGTs with such PEPS thanks to the analogy, based on sign problem-free variational Monte-Carlo; (3) apply these methods numerically to challenging, non-perturbative models, culminating in SU(3) in 3+1-D, with finite fermionic density, towards quantum chromodynamics. This is expected to overcome the sign problem of such models, thus closing an important, challenging and long-standing gap in the field of non-perturbative physics in general, and gauge theories in particular. The developed methods can be generalized for studying real-time dynamics of quantum field theories, models of quantum gravity, thermal quantum field theories and many other puzzling questions. They will also advance the parallel contemporary approach to LGT - quantum simulations and computations - as some open problems are shared by both approaches.
Schlüsselbegriffe
Programm/Programme
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
(öffnet in neuem Fenster) ERC-2023-COG
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
HORIZON-ERC - HORIZON ERC GrantsGastgebende Einrichtung
91904 Jerusalem
Israel