Projektbeschreibung
Fortgeschrittene mathematische Werkzeuge zur Analyse des Lernens im Gehirn
Künstliche neuronale Netze, die auf künstlicher Intelligenz (KI) beruhen, sind weit verbreitet, aber die im Gehirn beheimateten biologischen neuronalen Netze sind von Natur aus effektiver. Während künstliche neuronale Netze Funktionen darstellen, repräsentieren biologische neuronale Netze stochastische Prozesse. Das Gehirn hat demonstriert, dass es schneller lernt und besser generalisieren kann. Es sind jedoch weitere theoretische Arbeiten erforderlich, um die Lernmechanismen im Gehirn vollständig zu verstehen. In diesem Zusammenhang wird das Team des ERC-finanzierten Projekts A2B fortgeschrittene mathematische Werkzeuge zur Analyse von Lernprozessen in biologischen neuronalen Netzen entwickeln. Zu den Projektzielen zählt die Gewinnung von Erkenntnissen darüber, wie das Gehirn lernt, die Verbesserung der KI-Effizienz mit reduzierten Trainingsdaten und das Training neuromorpher Computerchips zur Emulation biologischer neuronaler Netze. Die Projektarbeit beginnt mit einer Neuinterpretation des lokalen Aktualisierungsprozesses der Parameter biologischer neuronaler Netze als eine spezifische und nicht genormte ableitungsfreie Optimierungsmethode.
Ziel
Why does the brain outperform AI? Artificial neural networks (ANNs) are at the core of the AI revolution. In the past years, enormous efforts have been made to unravel their mathematical properties, leading to fundamental insights and mathematical guarantees on when and why deep learning works well. ANNs are inspired by biological neural networks (BNNs) but differ in many respects: ANNs represent functions while BNNs represent stochastic processes, and the gradient-based deep learning applied for ANNs is very different from the local updating of BNNs.
BNNs are superior to ANNs in the sense that the brain learns faster and generalizes better. Despite the urgency for answers and the rich and interesting mathematical structures that BNNs create, scarcely any theoretical attempts have been made to understand learning in the brain. The stochastic process structure of BNNs and the need to understand the statistical convergence behavior call for a mathematical statistics approach. This project proposes the development of advanced mathematical tools in nonparametric and high- dimensional statistics to analyze learning in BNNs as a statistical method. The starting point is a novel interpretation of the local updating of BNN parameters as a specific and non-standard, derivative-free optimization method. Whereas derivative-free optimization is thought to be slow, our conjecture is that it leads to favorable statistical properties in the setting underlying BNNs.
If the research is successful, it has the potential to open a new research area in mathematical statistics and provide insights into how the brain learns. It could also lead to recommendations on how to make AI more efficient with less training data and how to train neuromorphic computer chips mimicking BNNs.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Sozialwissenschaften Politikissenschaft politischer Wandel Revolutionen
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz Computational Intelligence
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2023-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
7522 NB Enschede
Niederlande
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.