Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

SinGular Monge-Ampère equations

Objectif

This project is driven by M-theory, String theory in theoretical physics and the Minimal Model Problem in algebraic geometry.
We study singular Kähler spaces with a focus on their special structures (of a differential geometry nature) and their interaction with various areas of analysis.
To be more specific, we search for special (singular) Kähler metrics with nice curvature properties, such as Kähler-Einstein (KE) or constant scalar curvature (cscK) metrics. The problem of the existence of these metrics can be reformulated in terms of a Monge-Ampère equation, which is a non-linear partial differential equation (PDE). The KE case has been settled by Aubin, Yau (solving the Calabi conjecture), and Chen-Donaldson-Sun (solving the Yau-Tian-Donaldson conjecture); the cscK case has been very recently worked out by Chen-Cheng (solving a conjecture due to Tian). However, these results only hold on smooth Kähler manifolds, and one still needs to deal with singular varieties.
This is where Pluripotential Theory comes into the play. Boucksom-Eyssidieux-Guedj-Zeriahi and the author, along with Darvas and Lu, have demonstrated that pluripotential methods are very flexible and can be adapted to work with (singular) Monge-Ampère equations. Finding a solution to this type of equations that is smooth outside of the singular locus is equivalent to the existence of singular KE or cscK metrics.
At this point a crucial ingredient is missing: the regularity of these (weak) solutions. The main goal of SiGMA is to address this challenge by using new techniques and ideas, which might also aid in tackling problems in complex analysis and algebraic geometry.
The PI will establish a research group at her host institution focused on regularity problems of non-linear PDE’s and geometric problems in singular contexts. The goal is to create a center of research excellence in this topic.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2023-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 069 112,94
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 069 112,94

Bénéficiaires (3)

Mon livret 0 0